

SupMAE: Supervised Masked Autoencoders Are Efficient Vision Learners

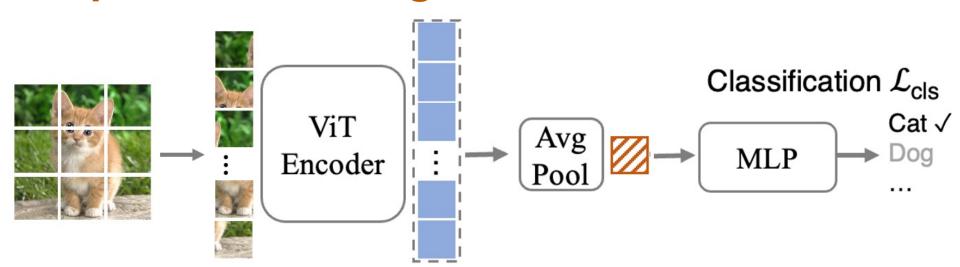
Feng Liang¹, Yangguang Li², Diana Marculescu¹

¹The University of Texas at Austin ²SenseTime Research

The 38th Annual AAAI Conference on Artificial Intelligence FEBRUARY 20-27, 2024 | VANCOUVER, CANADA

Vision transformer is difficult to train

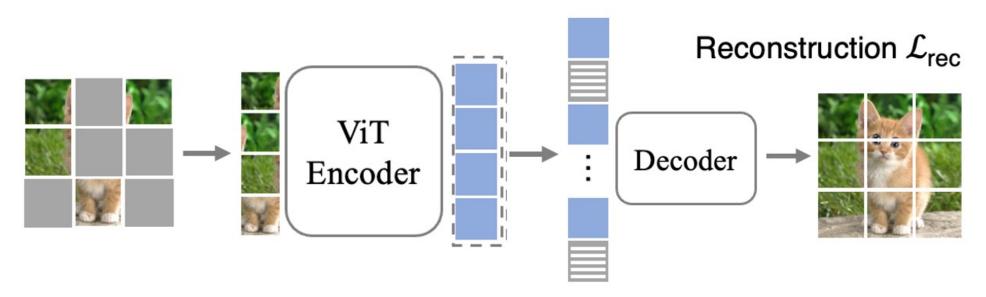
Supervised training



DeiT [H. Touvron et. al.]

*	Training time*	ImageNet acc.
Time is measure	91.5 hours	81.8
on 8 A5000 GPUs		

Self-upervised pre-training

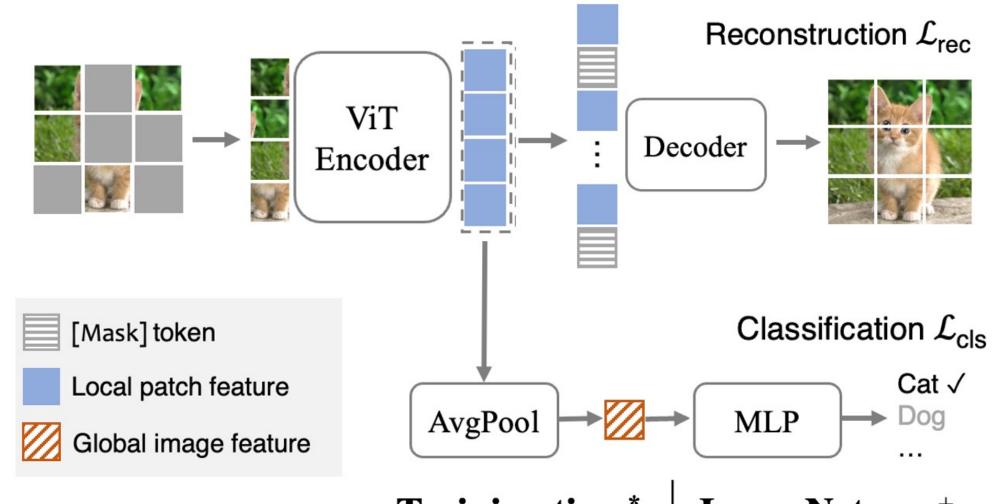


MAE [K. He *et. al.*]

	Training time*	ImageNet acc.+
⁺ Accuracy is after	394 hours	83.6
supervised training on ImageNet		

SupMAE: the best of both worlds

• SupMAE extends MAE by adding a supervised classification branch.



Rec. loss: learn middle-level features 125.9 hours 125.9 hours 83.6

Cls. loss: learn global features.

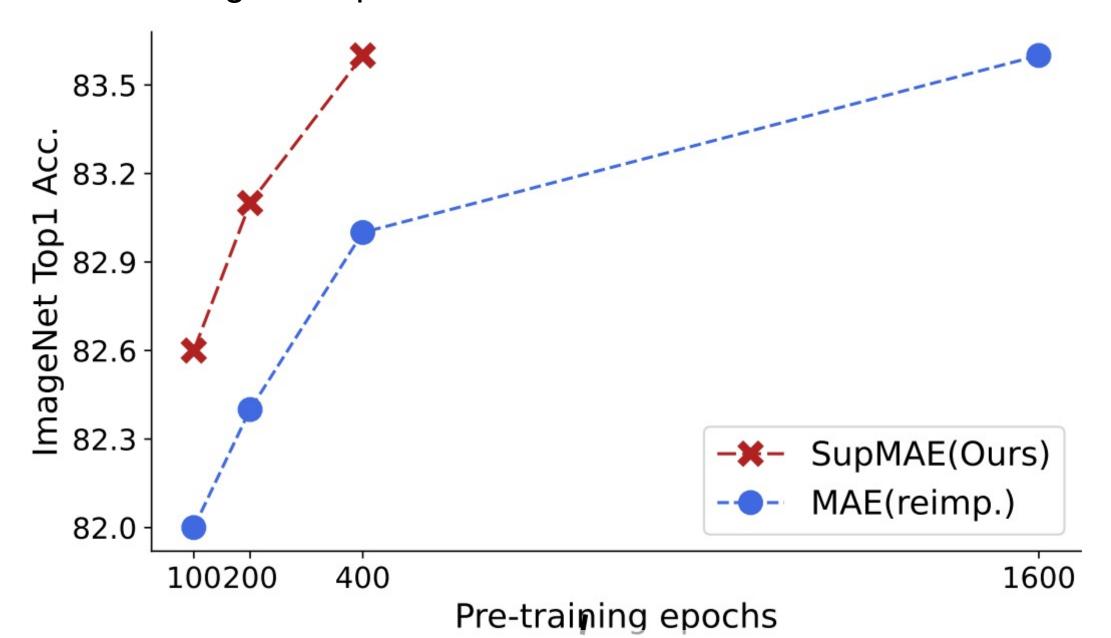
Comparison with sup. and self-sup. methods

• SupMAE shows a great efficiency and can achieve the same accuracy as MAE using only 30% compute.

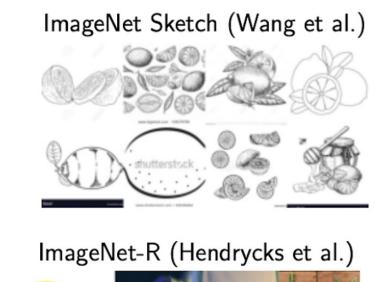
method	Total cost (Hours)	Normalized cost	Top1 acc.
MoCov3 (Chen*, Xie*, and He 2021) BEiT (Bao, Dong, and Wei 2021) MAE (He et al. 2021)	295.7 264.8 394	2.35× 2.10× 3.12×	83.2 83.6
ViT (Dosovitskiy et al. 2020) DeiT (Touvron et al. 2021) Naive supervised (He et al. 2021) SupMAE(Ours)	91.5 90 125.9	0.73× 0.71× 1×	77.9 81.8 82.3 83.6

SupMAE is more training efficient

 SupMAE is efficient and shows a much faster convergence speed.



SupMAE model shows better robustness



 All models are trained on ImageNet and evaluated on ImageNet variants.
 SupMAE model shows better roboustness on the benchmark.

dataset	MAE	DeiT	SupMAE(Ours
IN-Corruption ↓	51.7	47.4	48.1
IN-Adversarial	35.9	27.9	35.5
IN-Rendition	48.3	45.3	51.0
IN-Sketch	34.5	32.0	36.0
Score	41.8	39.5	43.6

SupMAE learns more transferable features

Transferring to semantic segmentation on ADE20K

method	mIoU	aAcc	mAcc
Naive supervised MAE SupMAE (ours)	47.4 48.6 49.0	82.8 82.7	59.4 60.2

Few-Shot transfer learning on 20 classification datasets

Pre-training Settings		20 Image Classification Datasets		
Checkpoint	Method	5-shot	20-shot	50-shot
Linear Probing				
MAE	Self-Sup.	33.37 ± 1.98	48.03 ± 2.70	58.26 ± 0.84
MoCo-v3	Self-Sup.	50.17 ± 3.43	61.99 ± 2.51	$\textbf{69.71} \pm \textbf{1.03}$
SupMAE(Ours)	Sup.	47.97 ± 0.44	60.86 ± 0.31	66.68 ± 0.47
Fine-tuning				
MAE	Self-Sup.	36.10 ± 3.25	54.13 ± 3.86	65.86 ± 2.42
MoCo-v3	Self-Sup.	39.30 ± 3.84	58.75 ± 5.55	70.33 ± 1.64
SupMAE(Ours)	Sup.	$\textbf{46.76} \pm \textbf{0.12}$	$\textbf{64.61} \pm \textbf{0.82}$	$\textbf{71.71} \pm \textbf{0.66}$

Generalize method to SimMIM

 Integrating the supervised branch into SimMIM. Results show that supervised branch is also compatible with other MIM frameworks.

method	SimMIM	SimMIM w/ sup.
Top1 acc.	82.8	83.0

Acknowledgment

 This work was supported in part by NSF CCF Grant No. 2107085, ONR Minerva program, iMAGiNE - the Intelligent Machine Engineering Consortium at UT Austin, and a UT Cockrell School of Engineering Doctoral Fellowship.

