





NOAH'S ARK LAB

#### Abstract

The fine-tuning of Large Language Models (LLMs) has enabled them to recently achieve milestones in natural language processing applications. The emergence of ever larger LLMs has paved the way for more efficient fine-tuning methods. Among these, the Low-Rank Adaptation (LoRA) method keeps most of the weights of the pretrained LLM frozen while introducing a low-rank decomposition of the weight matrix, enabling the tuning of only a very small proportion of the network. The performance on downstream tasks of models fine-tuned with LoRA heavily relies on a set of hyperparameters including the rank of the decomposition. In this work, we examine the whole pipeline of performing fine-tuning and validation on a pretrained LLM as a blackbox. Two blackbox optimization (BBO) techniques (NOMAD and NNI-TPE) are compared to explore the space of hyperparameters, both achieving a boost in performance and human alignment of the tuned model.

### Motivation

Parameter Efficient Fine Tuning (PEFT) methods such as LoRA are quit sensitive to the choice of hyperparameters. In this work we investigat how performing hyperparameter optimization (HPO) through blackbo optimization (BBO) techniques can better the instruction-tuned result of LLMs.

## Contributions

- Apply two blackbox optimization (BBO) techniques to optimize LoRA fine-tuning hyperparameters :
- MADS (Mesh Adaptive Direct Search) implemented in NOMAD;
- TPE (Tree-structured Parzen Estimator) implemented in NNI (Neural Network Intelligence).
- For the best sets of hyperparameters we study the correlation betwee validation losses and downstream instruction-following tasks scores.

• Full paper:



# Hyperparameter Optimization for Large Language Model **Instruction-Tuning**

Christophe Tribes<sup>1</sup> Sacha Benarroch-Lelong<sup>1</sup> Peng Lu<sup>2,3</sup> Ivan Kobyzev<sup>2</sup>

<sup>1</sup>GERAD and Polytechnique Montréal, <sup>2</sup>Huawei Noah's Ark Lab, <sup>3</sup>RALI, Université de Montréal

| • Fine-<br>Backb<br>PEFT                  | tuning pipel<br>one model: LL<br>' technique: Lo                                       | ine (i<br>aMA 2<br>RA wi                 | inner lo<br>2 (7 billio<br>th Adam                          | op):<br>ons paramet<br>iW.                                                         | zers).                                  |                                                                                                |
|-------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------|
| Fine-t<br>e<br>T                          | uning dataset:<br>entries from Sta<br>Dolly dataset                                    | 54k si<br>anford                         | zed instr<br>Alpaca                                         | uction-follov<br>Project data                                                      | wing da<br>aset an                      | ataset: mix o<br>d Databricks                                                                  |
| Valida<br>Huggi                           | ngFace Tranfor                                                                         | 3k-size                                  | ed entries<br>API: han                                      | s from Alpa<br>dling mode                                                          | ca and<br>l, train                      | Dolly.<br>ing and                                                                              |
| v<br>Hardw<br>(                           | vare: Training a<br>GPUs with 80 (                                                     | and va<br>GBs n                          | s.<br>lidation<br>nemory.                                   | conducted o                                                                        | on four                                 | NVIDIA-A1                                                                                      |
| • HPO<br>Object<br>h<br>Blackt<br>Iterati | outer loop:<br>tive: minimize<br>hyperparameter<br>box optimizatio<br>lons: 100 evalua | the va<br>cs.<br>on: <b>NC</b><br>ations | lidation 1<br>OMAD an<br>per optin                          | oss by adap<br>d NNI-TPE.<br>nization.                                             | oting Lo<br>E.                          | oRA fine-tur                                                                                   |
|                                           | Parameter<br>LoRA rank<br>LoRA α<br>AdamW dropout<br>AdamW lr                          | Type<br>int<br>int<br>float<br>float     | Po $\{4, 8, 16, 3, 4, 10^{-4}, 10^{-4}, 10^{-4}, 10^{-4}\}$ | $\frac{10^{10}}{32,64,128,256} \\ [1,64]] \\ 10^{-3}, 10^{-2}, 10^{-6}, 10^{-3}] $ | I<br>$\overline{5,512}$<br>$)^{-1},1\}$ | $\begin{array}{r} \hline \text{Default value} \\ \hline 8 \\ 32 \\ 0.1 \\ 10^{-5} \end{array}$ |
| Tal                                       | ble: Treatment of                                                                      | hyperpa                                  | arameters i                                                 | n NOMAD,                                                                           | possible                                | and default val                                                                                |
| • Perfo                                   | orm post opt                                                                           | imiza<br>s of c                          | tion ev<br>lownstr                                          | aluation c<br>eam instr                                                            | of the<br>uction                        | best candien-following                                                                         |

Compared models: **NOMAD** best vs default LoRA hyperparameters. Methodology: Ask preference of human evaluators to answers provided by models.



## POLYTECHNIQUE MONTRÉAL



