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Introduction & Motivation

SIMQ-NAS: Experimental Results
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 Rising Complexity in Neural Networks: As neural networks grow in
complexity, optimizing them for diverse hardware platforms becomes
iIncreasingly challenging.

* Need for Hardware-Agnostic Solutions: Traditional Neural
Architecture Search (NAS) methods focus on finding efficient
architectures without considering hardware constraints, leading to
suboptimal performance on specific platforms.

 Quantization as a Key Optimization: Quantization reduces model size
and latency by approximating high-precision weights with lower
precision, but it often requires careful tuning to maintain accuracy.

« Gap In Quantization Policy Search: Existing approaches to
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(a) BERT SST-2 model size

Search progression using LINAS [1] for BERT Base (a) and OFA
ResNet50 (b) super-networks.

» A clear progression towards the near-optimal Pareto front can be seen
with an increase in evaluation count.

< 1 » A significant improvement in model size Is observed when compared to
| | | the FP32 baselines.
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(b) OFA ResNet50 model size
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Search space definition
- FP32 Architecture
- Quantization Policy

guantization policy search are well-established for CNNs but less so for
transformer-based models, including foundation models.

 Objective: To develop a method that simultaneously optimizes for
neural network architecture and quantization policy, catering to the
specific needs of various hardware platforms without compromising on
model performance.
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« Multi-Objective Optimization: Utilizes multi-objective search algorithms
to navigate the trade-offs between model accuracy, size, and latency
effectively.

« Lightly Trained Predictors: Employs predictors that are trained with
minimal computational overhead to estimate the performance of different
architecture-quantization combinations.

 Broad Applicability: Demonstrates effectiveness across a range of
architectures, including uni-modal (ViT, BERT), multi-modal (BEIT-3)

Joint architecture and quantization policy search Pareto fronts on BERT
Base, BEIT-3 Base, VIT Base and OFA ResNet50 super-networks using
model size and normalized latency as the search objectives.
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geR sst2 search and joint architecture and
quantization policy search with accuracy

transformers, and CNNs (ResNet).

Significant Performance Gains: Achieves up to 4.80x improvement in
latency and 3.44x reduction in model size for certain networks, without
degrading accuracy compared to fully quantized INT8 baselines.

91 4

Accuracy (%)

o (-]
-~ w
i

@
o
L

-

-]
w
i

Discovered DNN Model
& BERT Base INTB

*
Accuracy (%)

1
88 !

i
o

=== Joint subnet and QP search pareto front
@ Discovered DNN Model
=== QP only search pareto front

40

60

B0

T T T T T T
100 120 140 160 180 200
Model Size (MB)

and model size on BERT Base fine-
tuned with InstaTune [2] on SST2
dataset.
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« Adaptability: SImQ-NAS's flexible approach allows for adaptation to
emerging neural network models and evolving hardware specifications.

Performing joint search using our combined InstaTune+SimQ
approach significantly improves the model size for similar accuracy.

%0 100 150 200 250 300 350 400 450
Model Size (MB)

Summary

» Demonstrated the use of multi-objective search algorithms with lightly
trained predictors for efficient search of sub-network architecture and
guantization policy.

» Comprehensive Applicablility: Demonstrated effectiveness across a variety » Significant Performance Gains: Achieved up to 4.80x improvement in
of architectures, including VIiT, BERT for uni-modal, BEIT-3 for multi-modal, latency and 3.44x reduction in model size, maintaining accuracy compared
and ResNet for convolutional models. to fully quantized INT8 baselines.
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