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Abstract

Vision transformers are known to be more compu-
tationally and data-intensive than CNN models.
These transformer models such as ViT |3|, require
all the input image tokens to learn the relation-
ship among them. These tokens are overlooked
by the multi-head self-attention (MHSA), result-
ing in many redundant and unnecessary compu-
tations in MHSA and the feed-forward network
(FFN). In this work, we propose a method to
optimize the amount of unnecessary interactions
between unimportant tokens by separating and
sending them through a different low-cost com-
putational path. Our method does not add any
parameters to the Vil model and aims to find the

best trade-off between training throughput and
achieving a 0% loss in the Top-1 accuracy of the
final model. Our experimental results on training
ViT-small from scratch show that SkipViT is ca-
pable of effectively dropping 55% of the tokens
while gaining 13.23% training throughput and
maintaining classification accuracy at the level of
the baseline model on Huawei Ascend910A.

Background

Multi-Head Attention (MHA). A crucial

component in Transformer models [1], is designed to
capture diverse aspects of the input data. The token
inputs x to the attention layer are transtormed into
three distinct matrices: queries (), keys K, and val-
ues V. These transformations are achieved through
a linear transtormation.

The attention mechanism in each head is computed
as:

KT
Attention(Q, K, V) = Softmax ¢

Vd

where d represents the dimensionality of the key

Ve (1)

(and query) vectors.

Here, QK' is the dot-product of queries and keys.
and v/d is the scaling factor to avoid large values in
the dot-product attention. In this paper we refer to

the resulting matrix of Softmaz(QK®/v/d) as the
attention scores.
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Proposed Method

Identifying Important Patches. In ViT mod-
els, we can employ the attention scores correspond-
ing to [CLS] token to detect important patches
|. The attention scores consist of a

of an image [2].

(n + 1) X (n + 1) matrix where n is the number
of input tokens to the attention unit. Based on the
attention Eq. 1, we can say that each row ¢ in the at-
tention score matrix are coefficients by which other
tokens will attend in forming the new ¢ token at the
attention unit output.

Skip Connection For Tokens. By dropping
45% of the tokens from the 6th transformer layer of

ViT-small and adding a single tused token, which
incorporates a weighted average of the removed to-
kens, our model was unable to maintain baseline ac-
curacy while gaining throughput, as shown in Table
1. We propose the use of a skip connection for the
tokens that would otherwise be discarded. This ap-
proach selectively excludes these tokens from con-
tributing to certain transformer layers within the
model, while still incorporating them in the final
layers. Returning the dropped tokens to their origi-
nal position among other tokens reduces the impact
of token dropping on final classification accuracy of

the model.

Experiments

We performed all of our experiments using ViT|4]
as our baseline architecture. We experimented with
two strategies for dropping the tokens. A single and
a two stage token dropping (i.e., drop in one or two
layers) strategy to find the best trade-off between
training performance and final accuracy of the Vil
model between these methods. A summary of our
experimental results are presented in Table 1.

In both of the dropping methods we were able to
see a relative speedup with limited to no loss in the
validation accuracy. In single layer token dropping
method, our best method with dropping 55% of the
tokens at layer 6 with skip connection to layer 11
reaches 0.01% accuracy drop while gaining 13.23%
throughput. Using two stage token dropping ap-
proach and drop ratio of 30% for layers 4 and 7
with skip connection to layer 11, our fastest achieved
16.09% more FPS and reaching 69.4% classification
accuracy which outperforms the token fusion tech-
nique.

Effect of Warm-up On Patch Detection
Quality We also experimented with a warm-up
period for this approach. Asimilar dropping ratio
(30%) in the same layers (4 and 7), ViT reaches
2.55% higher accuracy when first 15 epochs are
used as warm-up period before token dropping is
applied. We saw that the warm-up epochs are a
essential part of our token dropping strategy which
helps the model to select a more informative set of
tokens to keep.

Conclusion

In this paper, we propose SkipViTl, an intuitive
and stable framework to effectively reduce the
amount of computation required to train ViT-
based models. SkipViT takes advantage of the

attention scores of the [CLS] token to differ-
entiate the computation graph between impor-

tant from less informative tokens. Furthermore,

Our proposed framework achieves a significant

speedup with no loss in the accuracy of the model

by adding a skip connection from the dropping
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Finding The Optimal Skip Connection To
prevent from any degradation in Top-1 accuracy of
the Vi'T model we reuse the dropped tokens in the fu-
ture layers. Based on our findings delaying the skip
connection by even 1 block can cause a substantial
decrease in the accuracy metric. Dropping 30% of
the tokens at layers 4 and 7 and returning them to
the sequence at 10th layer compared to returning at
11th layer, achieves 2.99% higher FPS while loosing

0.33% accuracy.
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