

Self-Supervised Vision Transformers Are Efficient Segmentation Learners for Imperfect Labels Seungho Lee^{*1}, Seoungyoon Kang^{*1,2}, Hyunjung Shim^{†2}

Introduction

Semantic Segmentation

- Essential for understanding each pixel in an image, widely used in autonomous driving and medical imaging.
- High precision required, making data preparation time-consuming and costly.

Approach

- Utilizing self-supervised vision transformers (SSVT) to effectively work with imperfect labels (scribble, point-level and image-level).
- Lowering annotation costs significantly while maintaining high accuracy.

Research focus

- (1) Preserving structural information in SSVT for better segmentation results.
- (2) Only training the lightweight segmentation head, reducing overall training costs.

Contributions and results

- A cost-effective, generalizable approach for semantic segmentation under various imperfect label conditions.
- Outperformed existing methods, especially effective with text-driven labels from VL models (11.5%p).

Input image

Overview of our method. \mathcal{L} represents the matching loss for each imperfect mask type. For image-level label (class), \mathcal{L} is pixel-wise cross-entropy. For others, \mathcal{L} is masked pixel-wise cross-entropy. The backbone of the self-supervised vision transformer model is fixed during semantic segmentation training. Only the segmentation head is trained on imperfect masks and their corresponding images.

	Baseline		Ours
Scribble	$\mathrm{TEL}^{'22}$	77.6	80.1
Point	$\mathrm{TEL}^{'22}$	68	73.6
Class	ADELE ^{'22}	69.3	71.2
(Image-level)	SegFormer ^{'21}	65.6	/1.2
Zero-shot VL	SegFormer ^{'21}	26.9	38.4

Quantitative evaluation of different types of imperfect label type. The cost of labeling decreases in the following order for each type of supervision: scribble, point, class (image-level), and zero-shot VL.

Mathad Dratraining		Backbone strategy	
Fietraining	Freezing	Tuning	
DeepLabV1	Classification	64.6	64.5
DeepLabV3+	Classification	61.7	63.3
SegFormer	Classification	63.6	65.2
DINOv2 (ours)	Self-supervised	71.2	64.5

Performance analysis on backbone training strategies. Classification indicates model pretraining using ImageNet dataset.

¹Yonsei University, ²Korea Advanced Institute of Science & Technology

Method

Mask prediction

Experiments

Method	GT	SEAM	EPS
Pseudo-label	-	63.6	69.4
DeepLabV1	75.8	64.5	70.1
DeepLabV3+	78.5	63.3	68.6
SegFormer	82.8	65.5	69.0
Ours	80.6	71.2	74.1

Image-level label quality-based performance comparison. Quality indicates the mIoU between the pseudo-label of each method and the ground-truth. For each method, we evaluate mIoU along various types of pseudo-labels used for training the segmentation model.

Method	SEAM	EPS
Pseudo-label	63.6	69.4
DINOv1	58.9	63.6
ibot-L	65.2	70.0
ibot-L/22k	65.8	73.3
DINOv2	71.2	74.1

Self-supervised vision transformer performance across varying levels of imperfect label quality. All SSVT models are trained using our same strategy.

* indicates an equal contribution *t* indicates a corresponding author

image is the result of applying K-means clustering to each token from DINOv2 using the left image. Without supervision, DINOv2 exhibits a strong shape prior, in that the objects are identifiable only with the K-m clustering.

Qualitative evaluation on image-level labels.

t any
ndicating
ieans