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▪ ML models are now used in every modern computing system

▪ Hardware constraints are a key limiting factor for ML on mobile platforms
 Energy constraints: object detection drains smartphone battery in 1 hour! [Yang et al., CVPR’17]

 Edge-cloud communication constraints

 On-device inference (response) time constraints AND expensive on-device training

Machine learning applications push hardware to its limits
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Intellectual property
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Sensitive environments

Personal data

Retrain
model

Collect data

Update Model

The cloud to edge continuum vs. privacy trade-offs
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What about on-device learning?

▪ Recall:

▪ Hardware constraints are the key limiting factor for DL on mobile platforms
 Energy constraints: object detection drains smartphone battery in 1 hour! [Yang et al., CVPR’17]

 Even more expensive to do on-device training

▪ Solution: Transfer learning → adapt the model to the edge device
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Transfer learning on edge is challenging – even for ConvNets

▪ Fine-tuning is expensive for large models

 Requires careful selection of what is fine-tuned and when

▪ Inverted Residual Block (IRB) based models are prevalent on edge
 But they require quite a bit of the model resident in memory plus lost of computation

▪ Techniques used so far
 Freeze certain blocks/layers when fine-tuning

 Identify which layers are most important for accuracy yet least expensive to fine-tune

 Are challenging to use under limited hardware constraints
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MobileTL: Efficient learning with IRBs

▪ Update bias only for intermediate normalization layers

Adapt distribution difference efficiently

▪ Approximate activation layer backward as a signed function

Store binary masks for activation layers

[H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu, AAAI’23]
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Backward activation approximation

▪ Backward approximation for Hard-swish activation function 
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Fine-tune only task-specific blocks

▪ Freezes input layers

Low-level features can be shared across different datasets

Reduce memory footprint by 8-bit quantization

Reduce FLOPs by avoiding calculating gradients for the whole network 

Zeiler, Matthew D., and Rob Fergus. "Visualizing and understanding convolutional networks." In ECCV, 2014.
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Experiments: Less memory and FLOPs

▪ Reduce training memory and FLOPs for MobileNetV2 [1] and V3 [2]

[1] Sandler, M., et al. Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018

[2] Howard, A., et al. Searching for mobilenetv3. In ICCV, 2019
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Baseline model comparison

▪ On the Pareto front under the same memory constraint for various datasets

Cai, H., et al. Tinytl: Reduce memory, not parameters for efficient on-device learning. In NeurIPS, 2020
Cai, H., et al. ProxylessNAS: Direct neural architecture search on target task and hardware. In ICLR, 2019

[H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu, AAAI’23]
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Generalization of MobileTL

▪ MobileTL generalizes to off-the-shelf models

[H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu, AAAI’23]
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Ablation study

▪ MobileTL is more effective than patches

▪ 45-50% lower latency means 45-50% lower CO2 footprint

▪ MobileTL has lowest latency

[H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu, AAAI’23]
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What about vision transformers (ViTs)?

How can we decrease the computational cost for all operations involved in 
backpropagation (BP) through any linear layer in the ViT model?

 Accurate Backpropagation is NOT necessary

 Energy concentrates in low-frequency area (top-left corner)

 Gradient of feature maps can be accurately represented with very few elements in low-frequency area

Spectrum of feature gradients in ViT [Unit: db]



EIW: Edge Intelligence Workshop at AAAI – 26 February 2024 17Diana Marculescu © 2024

LBP-WHT: Low-rank BackProp via Walsh-Hadamard Transformation

Idea:

 First project gradient into a low-rank space using 𝑝(⋅), then perform matrix multiplications, 
and finally project them black using 𝑝−1(⋅), where both 𝑝 and 𝑝−1 are implemented with WHT

[Y. Yang, H.-Y. Chiang, G. Li, D. Marculescu, R. Marculescu, NeurIPS’23]
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LBP-WHT is fast and accurate

[Y. Yang, H.-Y. Chiang, G. Li, D. Marculescu, R. Marculescu, NeurIPS’23]
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LBP-WHT transfers well across multiple tasks

Image classification on CIFAR100 with EfficientFormers

Semantic segmentation on Cityscapes and VOC12 with Segformer

[Y. Yang, H.-Y. Chiang, G. Li, D. Marculescu, R. Marculescu, NeurIPS’23]
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ViTs are hard to train: Can we combine best of both worlds?

Supervised training Self-supervised pre-training

…

DeiT [H. Touvron et. al.]

Training time* ImageNet acc.

91.5 hours 81.8

Training time* ImageNet acc.+

394 hours 83.6

* Time is measure on 8 A5000 GPUs

Masked AutoEncoders [K. He et. al.]

+ Accuracy is obtained after supervised fine-tuning on ImageNet
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SupMAE achieves the best of both worlds

Training time* ImageNet acc.+

125.9 hours 83.6
The proposed SupMAE extends MAE by adding 
a supervised classification branch

▪ Reconstruction loss: learn middle-level 
features

▪ Classification loss: learn global features

* Time is measure on 8 A5000 GPUs
+ Accuracy is obtained after supervised fine-tuning on ImageNet

[F. (J.) Liang, Y. Li, D. Marculescu, EIW-AAAI’24]
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What about model quantization in transformers?

▪ Quantization enables efficient deployment of models to a variety of 
inference scenarios

▪ A compressed model with minimal accuracy degradation is appealing 
for deployment to edge devices

4-bit Quantized Model
(3.4M parameters)

Full Precision Model
(10.2M parameters)

Edge Devices
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Post-training quantization (PTQ) for edge deployment

▪ The setup for post-training quantization assumes a pre-trained model:

Full Precision Model
(Trained)

Compressed
Model

Quantization 
Method

Deploy to Device
for Inference

Calibration
Data
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Quantization in the Loss Landscape of Vision Transformers

Quantized ResNet-18

[N. Frumkin, D. Gope, D. Marculescu, ICCV’23]

Quantized DeiT-Tiny

sharp local minima
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Evol-Q: Minimizing a global objective using contrastive loss

▪ Global optimization with a contrastive loss is optimal in our setup

We use the infoNCE loss on network 
predictions (the final layer’s output), 
and not on intermediary feature maps

[N. Frumkin, D. Gope, D. Marculescu, ICCV’23]
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Evol-Q: Evolutionary search

▪ Recall the uniform quantization formula:

x original floating point vector

 quantization scale

 quantization range (min, max)

Goal: learn the optimal quantization scales for each attention block
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Evol-Q: a fast, effective method for PTQ

▪ By applying block-wise evolutionary search, we can evaluate small 
perturbations on quantization scale in a global manner

▪ Apply block-wise mutation, evaluate using a global contrastive loss

[N. Frumkin, D. Gope, D. Marculescu, ICCV’23]
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Results on ViTs

▪ Top-1 Accuracy on ImageNet for a variety of methods on DeiT and 
ViT transformers

▪ PSAQ-ViT-V2 achieves comparable accuracy, but is not end-to-end
[N. Frumkin, D. Gope, D. Marculescu, ICCV’23]

Evol-Q Evol-Q
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Results on ViTs

▪ Top-1 Accuracy on ImageNet for LeViT models

▪ FQ-ViT is effective on standard ViTs, but Evol-Q can bridge the gap to 
different vision transformer architectures

[N. Frumkin, D. Gope, D. Marculescu, ICCV’23]

Evol-Q
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Comparison with Gradient Methods

▪ Evol-Q improves over gradient-based methods, suggesting that 
gradient information does not point to a good local minima in the 
non-smooth loss landscape

[N. Frumkin, D. Gope, D. Marculescu, ICCV’23]

Evol-Q
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Latency vs. accuracy trade-off

▪ Evol-Q is pareto-optimal with respect to prior ViT quantization work

Evol-Q’s runtime on Nvidia A100 

[N. Frumkin, D. Gope, D. Marculescu, ICCV’23]

Evol-Q
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Summary

▪ ViTs can offer higher performance than ConvNet models but at a high 
computational cost

▪ MobileTL helps with reducing cost for on-device learning, and similar work for 
ViTs relying on low-rank backprop like LBP-WHT achieves both accuracy and 
speed

▪ Post-training quantization in ViTs with Evol-Q increases efficiency of on-device 
deployment at no drop in performance



Thank you!
Questions
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