The University of Texas at Austin Chandra Department of Electrical and Computer Engineering Cockrell School of Engineering

Efficient Learning for Vision Transformers

Diana Marculescu

The University of Texas at Austin

dianam@utexas.edu

enyac.org

Machine learning applications push hardware to its limits

ML models are now used in every modern computing system

Hardware constraints are a key limiting factor for ML on mobile platforms

- Energy constraints: object detection drains smartphone battery in 1 hour! [Yang et al., CVPR'17]
- Edge-cloud communication constraints
- On-device inference (response) time constraints AND expensive on-device training

The cloud to edge continuum vs. privacy trade-offs

What about on-device learning?

Recall:

Hardware constraints are the key limiting factor for DL on mobile platforms

- Energy constraints: object detection drains smartphone battery in 1 hour! [Yang et al., CVPR'17]
- Even more expensive to do on-device training

• Solution: Transfer learning \rightarrow adapt the model to the edge device

Transfer learning on edge is challenging – even for ConvNets

Fine-tuning is expensive for large models

Requires careful selection of what is fine-tuned and when

Inverted Residual Block (IRB) based models are prevalent on edge

• But they require quite a bit of the model resident in memory plus lost of computation

Techniques used so far

- Freeze certain blocks/layers when fine-tuning
- Identify which layers are most important for accuracy yet least expensive to fine-tune
- Are challenging to use under limited hardware constraints

MobileTL: Efficient learning with IRBs

Update bias only for intermediate normalization layers

- Adapt distribution difference efficiently
- Approximate activation layer backward as a signed function

Store binary masks for activation lavers

[H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu, AAAI'23]

EIW: Edge Intelligence Workshop at AAAI - 26 February 2024

Backward activation approximation

Backward approximation for Hard-swish activation function

Fine-tune only task-specific blocks

Freezes input layers

- Low-level features can be shared across different datasets
- Reduce memory footprint by 8-bit quantization
- Reduce FLOPs by avoiding calculating gradients for the whole network

Experiments: Less memory and FLOPs

Reduce training memory and FLOPs for MobileNetV2 [1] and V3 [2]

[1] Sandler, M., et al. Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018 [2] Howard, A., et al. Searching for mobilenetv3. In ICCV, 2019

Baseline model comparison

On the Pareto front under the same memory constraint for various datasets

Cai, H., et al. Tinytl: Reduce memory, not parameters for efficient on-device learning. In NeurIPS, 2020 Cai, H., et al. ProxylessNAS: Direct neural architecture search on target task and hardware. In ICLR, 2019 [H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu, AAAI'23]

Generalization of MobileTL

MobileTL generalizes to off-the-shelf models

[H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu, AAAI'23]

Ablation study

MobileTL is more effective than patches

MobileTL has lowest latency

Mobile	Main	Res	Train	Mem	CIFAR10		Device	Method	Latency (s)
TI	D11z	Dotoh	Dorom	(MD)	(0/2)			FT-All	0.235
	$\mathbf{IL} \mathbf{DIK} \mathbf{Fatch} \mathbf{Fatah}. (\mathbf{WID}) (\%)$	Nano	FT-BN	0.138					
			1 500 (00	40.1	05.4		Inallo	FT-Bias	0.130
	✓		1,580,682	40.1	95.4			FT-3BLKs (Ours)	0.114
\checkmark			1,576,074	33.2	95.8			FT-All	2.465
			2211466	35.8	95.8		RPI4	FT-BN	1.894
•	fuere	V	2,211,400	20.0	04.4			FT-Bias	1.818
\checkmark	Trozen	\checkmark	1,000,362	32.3	94.4			FT-3BLKs (Ours)	1.344

45-50% lower latency means 45-50% lower CO₂ footprint

[H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu, AAAI'23]

What about vision transformers (ViTs)?

How can we decrease the computational cost for all operations involved in backpropagation (BP) through any linear layer in the ViT model?

- Accurate Backpropagation is NOT necessary
- Energy concentrates in low-frequency area (top-left corner)
- Gradient of feature maps can be accurately represented with very few elements in low-frequency area

Spectrum of feature gradients in ViT [Unit: db]

LBP-WHT: Low-rank BackProp via Walsh-Hadamard Transformation

Idea:

• First project gradient into a low-rank space using $p(\cdot)$, then perform matrix multiplications, and finally project them black using $p^{-1}(\cdot)$, where both p and p^{-1} are implemented with WHT

[Y. Yang, H.-Y. Chiang, G. Li, D. Marculescu, R. Marculescu, NeurIPS'23]

LBP-WHT is fast and accurate

[Y. Yang, H.-Y. Chiang, G. Li, D. Marculescu, R. Marculescu, NeurIPS'23]

LBP-WHT transfers well across multiple tasks

Semantic segmentation on Cityscapes and VOC12 with Segformer									
Partial Training: Training Last Stage + Decoder Full Training									
Method	R	MFLOPs	City	VOC12A	Method	R	MFLOPs	City	VOC12A
Full BP	-	10052.00	62.85	69.30	Full BP	-	16700.26	67.37	70.84
LoRA	8	5854.61	51.43	58.18	LoRA	8	11976.46	62.57	58.18
LoRA-all	8	6262.01	58.07	66.26	LoRA-all	8	11971.13	65.74	67.82
$\bar{L}\bar{P}_{L_1}-\bar{2}\star$	3	<u>1481.94</u>	<u>58.95</u>	<u>67.93</u>	$\bar{L}P_{L_1} - \bar{2}$	3	5746.54	61.57	<u>6</u> 7.93
LP_{L_1} -4 \bigstar	10	2725.39	60.97	68.85	$LP_{L_1}-4\bigstar$	10	7295.52	64.72	68.85
LP_{L_1} -8	36	7308.45	62.68	68.95	LP_{L_1} -8	36	13086.06	66.17	68.95

Image classification on CIFAR100 with EfficientFormers

Mothod	CELOD _c	Memory	Accuracy [%]		
Methou	GLOIS	Activation	Gradient	CF100	CF10
Full BP	121	141	2352	79.28	95.23
LoRA-all	62	142	44	76.92	94.38
Ours	25	29	2352	78.27	94.60
Ours+LoRA-all	13	29	44	75.48	93.74

[Y. Yang, H.-Y. Chiang, G. Li, D. Marculescu, R. Marculescu, NeurIPS'23]

ViTs are hard to train: Can we combine best of both worlds?

* Time is measure on 8 A5000 GPUs

⁺ Accuracy is obtained after supervised fine-tuning on ImageNet

SupMAE achieves the best of both worlds

The proposed SupMAE extends MAE by adding a supervised classification branch

* Time is measure on 8 A5000 GPUs

⁺ Accuracy is obtained after supervised fine-tuning on ImageNet

- Reconstruction loss: learn middle-level features
- Classification loss: learn global features

Training time [*]	ImageNet acc.⁺		
125.9 hours	83.6		
\checkmark	\checkmark		

[F. (J.) Liang, Y. Li, D. Marculescu, EIW-AAAI'24]

What about model quantization in transformers?

Quantization enables efficient deployment of models to a variety of inference scenarios

A compressed model with minimal accuracy degradation is appealing for deployment to edge devices

Post-training quantization (PTQ) for edge deployment

The setup for post-training quantization assumes a pre-trained model:

Quantization in the Loss Landscape of Vision Transformers

Quantized ResNet-18

Quantized DeiT-Tiny

[N. Frumkin, D. Gope, D. Marculescu, ICCV'23]

Evol-Q: Minimizing a *global objective* **using contrastive loss**

Global optimization with a contrastive loss is optimal in our setup

Minimize angle with o^+ **Maximize** dissimilarity with o^-

 We use the infoNCE loss on network predictions (the final layer's output), and not on intermediary feature maps

[N. Frumkin, D. Gope, D. Marculescu, ICCV'23]

Recall the uniform quantization formula:

 δ

$$Q(\mathbf{x}, \delta, \alpha, \beta) = clip(round(\frac{\mathbf{x}}{\delta}), \alpha, \beta)$$

- **x** original floating point vector
 - quantization scale
- α, β quantization range (min, max)

Goal: learn the optimal quantization scales for each attention block

Evol-Q: a fast, effective method for PTQ

By applying block-wise evolutionary search, we can evaluate small perturbations on quantization scale in a global manner

[N. Frumkin, D. Gope, D. Marculescu, ICCV'23]

Apply block-wise mutation, evaluate using a global contrastive loss

Results on ViTs

Top-1 Accuracy on ImageNet for a variety of methods on DeiT and ViT transformers

8-bit weights, 8-bit activations (8W8A)								
Method	DeiT-T	DeiT-S	DeiT-B	ViT-B				
PSAQ-ViT	71.56	76.92	79.10	37.36				
PTQ4ViT	-	79.47	81.48	84.25				
FQ-ViT	71.61	79.17	81.20	83.31				
PSAQ-ViT-V2 [†]	72.17	79.56	81.52	-				
Evol-Q (ours)	71.63	79.57	82.67	84.40				

[†] Does not quantize Softmax/GELU layers

4-bit weights, 8-bit activations (4W8A) Method DeiT-T DeiT-S DeiT-B ViT-B **PSAQ-ViT** 73.23 77.05 25.34 65.57 PTQ4ViT 64.39 76.93 FO-ViT 66.91 79.99 78.73 PSAQ-ViT-V2[†] **68.61** 76.36 79.49 Evol-Q(ours) 67.29 77.06 80.15 79.50

[†] Does not quantize Softmax/GELU layers

PSAQ-ViT-V2 achieves comparable accuracy, but is not end-to-end

[N. Frumkin, D. Gope, D. Marculescu, ICCV'23]

Results on ViTs

Top-1 Accuracy on ImageNet for LeViT models

Model	FQ-ViT	Evol-Q (ours)
LeViT-128S	14.90	29.20
LeViT-192	17.00	30.37
LeViT-256	61.33	64.57
LeViT-384	64.60	69.50

FQ-ViT is effective on standard ViTs, but Evol-Q can bridge the gap to different vision transformer architectures

[N. Frumkin, D. Gope, D. Marculescu, ICCV'23]

Comparison with Gradient Methods

Method	DeiT-T	DeiT-S	DeiT-B	ViT-B
SGD	71.57	79.25	81.24	83.40
Adam	71.29	79.25	81.24	83.25
AdamW	71.37	79.00	81.30	83.36
Evol-Q (ours)	71.63	79.57	82.67	84.40

Evol-Q improves over gradient-based methods, suggesting that gradient information does not point to a good local minima in the non-smooth loss landscape

Latency vs. accuracy trade-off

Evol-Q is pareto-optimal with respect to prior ViT quantization work

Summary

- ViTs can offer higher performance than ConvNet models but at a high computational cost
- MobileTL helps with reducing cost for on-device learning, and similar work for ViTs relying on low-rank backprop like LBP-WHT achieves both accuracy and speed
- Post-training quantization in ViTs with Evol-Q increases efficiency of on-device deployment at no drop in performance

The University of Texas at Austin Chandra Department of Electrical and Computer Engineering Cockrell School of Engineering

Thank you! Questions

Acknowledgements:

Students: Hung-Yueh Chiang, Natasha Frumkin, Jeff Liang, Tanvir Mahmud

Support: National Science Foundation, Office of Naval Research (Minerva), iMAGiNE

Consortium at the University of Texas at Austin

EnyAC group webpage: enyac.org

Code: github.com/enyac-group

