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Machine learning applications push hardware to its limits

" ML models are now used in every modern computing system
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" Hardware constraints are a key limiting factor for ML on mobile platforms
¢ Energy constraints: object detection drains smartphone battery in 1 hour! [Yanget al., CVPR’17]
¢ Edge-cloud communication constraints
¢ On-device inference (response) time constraints AND expensive on-device training
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The cloud to edge continuum vs. privacy trade-offs
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What about on-device learning?

" Recall:
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" Hardware constraints are the key limiting factor for DL on mobile platforms
¢ Energy constraints: object detection drains smartphone battery in 1 hour! [Yang et al., CVPR’17]
¢ Even more expensive to do on-device training

= Solution: Transfer learning = adapt the model to the edge device
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Transfer learning on edge is challenging — even for ConvNets

" Fine-tuning is expensive for large models

¢ Requires careful selection of what is fine-tuned and when

" Inverted Residual Block (IRB) based models are prevalent on edge
¢ But they require quite a bit of the model resident in memory plus lost of computation

" Techniques used so far
¢ Freeze certain blocks/layers when fine-tuning
¢ Identify which layers are most important for accuracy yet least expensive to fine-tune
¢ Are challenging to use under limited hardware constraints
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MobileTL: Efficient learning with IRBs

" Update bias only for intermediate normalization layers
¢ Adapt distribution difference efficiently

" Approximate activation layer backward as a signed function
¢ Store binarv masks for activation lavers
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[H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu, AAAI’23]
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Backward activation approximation

" Backward approximation for Hard-swish activation function
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Fine-tune only task-specific blocks

" Freezes input layers
¢ Low-level features can be shared across different datasets
¢ Reduce memory footprint by 8-bit quantization
¢ Reduce FLOPs by avoiding calculating gradients for the whole network

7 f'(z) = g(z) o W' ()

~9(z) W' ()

OO

Zeiler, Matthew D.,and Rob Fergus. "Visualizing and understanding convolutional networks." In ECCV, 2014.
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Experiments: Less memory and FLOPs

" Reduce training memory and FLOPs for MobileNetV2 [1] and V3 [2]
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[1]1Sandler, M., et al. Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018
[2]Howard, A., etal. Searching for mobilenetv3. InICCV, 2019
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Baseline model comparison

" On the Pareto front under the same memory constraint for various datasets
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Cai, H., etal. Tinytl: Reduce memory, not parameters for efficient on-device learning.In NeurlPS, 2020
Cai, H., etal. ProxylessNAS: Direct neural architecture searchon target task and hardware. In ICLR, 2019
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Generalization of MobileTL

" MobileTL generalizes to off-the-shelf models
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[H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu, AAAI’23]
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Ablation study

" MobileTL is more effective than patches " MobileTL has lowest latency

Mobile Main Res. Train Mem. | CIFARI10 Device BF/I;HX)IT La?g;i ©)
TL Blk Patch Param. (MB) (%) _— FT-_B_N 0.138
v 1,580,682 | 40.1 95.4 FT3BLE. (Our) | 011
v v 1,576,074 | 33.2 95.8 FT-All 2.465
v v v | 2,211,466 | 358 95.8 RP14 bk o
v frozen v 1,060,362 32.3 94.4 FT-3BLKSs (Ours) 1.344

" 45-50% lower latency means 45-50% lower CO, footprint

[H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu, AAAI’23]
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What about vision transformers (ViTs)?

How can we decrease the computational cost for all operations involved in
backpropagation (BP) through any linear layer in the ViT model?

¢ Accurate Backpropagation is NOT necessary

¢ Energy concentrates in low-frequency area (top-left corner)

¢ Gradient of feature maps can be accurately represented with very few elements in low-frequency area

Feed Forward 1 Feed Forward 2 Multihead Attention-QKV Multihead Attention-Projection
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Spectrum of feature gradients in ViT [Unit: db]
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LBP-WHT: Low-rank BackProp via Walsh-Hadamard Transformation

Idea:

¢ First project gradient into a low-rank space using p(+), then perform matrix multiplications,
and finally project them black using p~1(+), where both p and p~! are implemented with WHT

> Full-rank :gW
Matrix Mul
“Jx

(a) Vanilla BP
S =

SRS

_"56'\

= A 9w 9w
1 —_— -1
n.gy p(+) Yy ~ PO o
= I« Y
- w x X
= Low-rank Low-rank Reverse
Projection Matrix Mul Projection

[Y. Yang, H.-Y. Chiang, G. Li, D. Marculescu, R. Marculescu, NeurlPS’23]
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LBP-WHT is fast and accurate
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[Y. Yang, H.-Y. Chiang, G. Li, D. Marculescu, R. Marculescu, NeurlPS’23]
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LBP-WHT transfers well across multiple tasks

Semantic segmentation on Cityscapes and VOC12 with Segformer

Partial Training: Training Last Stage + Decoder Full Training
Method R | MFLOPs City VOCI2A | Method R | MFLOPs City VOCI2A
Full BP - | 10052.00 62.85 69.30 Full BP - | 16700.26  67.37 70.84
LoRA 8 5854.61 51.43 58.18 LoRA 8 | 11976.46 62.57 58.18
LoRA-all 8 6262.01  58.07 66.26 LoRA-all 8 | 11971.13 65.74 67.82
LPp,-2% 3 | 1481.94 5895 6793 [ LPr -2 3 | 574654 6157 6793
LP; -4% 10| 2725.39 60.97 68.85 LP; -4% 10 | 7295.52 64.72 68.85
LPy,-8 36 | 7308.45  62.68 68.95 LPy, -8 36 | 13086.06 66.17 68.95
Image classification on CIFAR100 with EfficientFormers
Memory [MB] Accuracy [%]
Method GELOPs A ctivation ~ Gradient CF100 CF10
Full BP 121 141 2352 79.28  95.23
LoRA-all 62 142 44 76.92  94.38
Ours 25 29 2352 78.27  94.60
Ours+LoRA-all 13 29 4 7548  93.74

[Y. Yang, H.-Y. Chiang, G. Li, D. Marculescu, R. Marculescu, NeurlPS’23]
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ViTs are hard to train: Can we combine best of both worlds?

Supervised training Self-supervised pre-training

[] Reconstruction L,q

Classification L

ViT Catv :—I = ViT . irv';-::
Encoder |, VA_’ I_D._Og . | ln . Encoder i ; _’.?4‘

D L
,‘-‘Ii_ . R -

[T r—ar—}

DeiT [H. Touvron et. al.] Masked AutoEncoders [K. He et. al.]

Training time” | ImageNet acc.”
394 hours | 83.6

X Vv

Training time” | ImageNet acc.
91.5 hours | 81.8

v X

" Time is measure on 8 A5000 GPUs
+Accuracy is obtained after supervised fine-tuning on ImageNet
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SuUpMAE achieves the best of both worlds
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+Accuracy is obtained after supervised fine-tuning on ImageNet

[F. (J.) Liang, Y. Li, D. Marculescu, EIW-AAAI’24]
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What about model quantization in transformers?

" Quantization enables efficient deployment of models to a variety of
inference scenarios

S

Full Precision Model Edee Devices 4-bit Quantized Model
(10.2M parameters) g€ Levice (3.4M parameters)

" A compressed model with minimal accuracy degradation is appealing
for deployment to edge devices
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Post-training quantization (PTQ) for edge deployment

" The setup for post-training quantization assumes a pre-trained model:

W Calibration
—
—_—y Data

|

uantization
[Q ]

Method

Full Precision Model Compressed Deploy to Device
(Trained) Model for Inference
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Quantization in the Loss Landscape of Vision Transformers

sharp local minima

0.8
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Quantized ResNet-18 Quantized DeiT-Tiny

[N. Frumkin, D. Gope, D. Marculescu, ICCV’23]

Diana Marculescu © 2024 EIW: Edge Intelligence Workshop at AAAl — 26 February 2024 31



Evol-Q: Minimizing a global objective using contrastive loss

" Global optimization with a contrastive loss is optimal in our setup

Diana Marculescu © 2024

Minimize angle with o
Maximize dissimilarity with o™

0
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Corresponding FP Batch

¢ We use the infoNCE loss on network
predictions (the final layer’s output),
and not on intermediary feature maps

[N. Frumkin, D. Gope, D. Marculescu, ICCV’23]
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Evol-Q: Evolutionary search

" Recall the uniform quantization formula:
Q(x,8,a,8) = clip(round(5), o, B)

X original floating point vector
o) quantization scale
QL [j’ guantization range (min, max)

Goal: learn the optimal quantization scales for each attention block

Diana Marculescu © 2024 EIW: Edge Intelligence Workshop at AAAl — 26 February 2024
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Evol-Q: a fast, effective method for PTQ

" By applying block-wise evolutionary search, we can evaluate small
perturbations on quantization scale in a global manner

Step 1: Mutation

Attention Block 7
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Quantized ViT
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=N e >
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[N. Frumkin, D. Gope, D. Marculescu, ICCV’23]

" Apply block-wise mutation, evaluate using a global contrastive loss

Diana Marculescu © 2024
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Results on ViTs

" Top-1 Accuracy on ImageNet for a variety of methods on DeiT and
ViT transformers

8-bit weights, 8-bit activations (§SW8A) 4-bit weights, 8-bit activations (4W8A)
Method DeiT-T DeiT-S DeiT-B  ViT-B Method DeiT-T DeiT-S DeiT-B  ViT-B
PSAQ-ViT 71.56 76.92 79.10  37.36 PSAQ-ViT 65.57 73.23 77.05  25.34
PTQ4ViT - 79.47 81.48  84.25 PTQ4ViT - - 64.39 -
FQ-ViT 71.61 79.17 81.20  83.31 FQ-ViT 66.91 76.93 79.99  78.73
PSAQ-ViT-V2' | 72.17 79.56 81.52 - PSAQ-VIiT-V2' | 68.61 76.36 79 .49 ;
Evol-Q(ours) | 71.63  79.57  82.67 84.40 Evol-Q(ours) | 67.29  77.06  80.15  79.50
" Does not quantize Softmax/GELU layers " Does not quantize Softmax/GELU layers

" PSAQ-ViT-V2 achieves comparable accuracy, but is not end-to-end

[N. Frumkin, D. Gope, D. Marculescu, ICCV’23]
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Results on ViTs

" Top-1 Accuracy on ImageNet for LeViT models

Model FQ-ViT  Evol-Q (ours)
LeViT-128S 14.90 29.20
LeViT-192 17.00 30.37
LeViT-256 61.33 64.57
LeViT-384 64.60 69.50

" FQ-ViT is effective on standard ViTs, but Evol-Q can bridge the gap to

different vision transformer architectures

ulescu© 2024

EIW: Edge Intelligence Workshop at AAAl — 26 February 2024
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Comparison with Gradient Methods

Method DeiT-T DeiT-S DeiT-B ViT-B

79.25
79.25
79.00
79.57

81.24
81.24
81.30
82.67

SGD T1.57
Adam 71.29
AdamW 71.37

Evol-Q (ours) | 71.63

83.40
83.25
83.36
84.40

" Evol-Q improves over gradient-based methods, suggesting that
gradient information does not point to a good local minima in the

non-smooth loss landscape

Diana Marculescu © 2024 EIW: Edge Intelligence Workshop at AAAl — 26 February 2024
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Latency vs. accuracy trade-off

" Evol-Q is pareto-optimal with respect to prior ViT quantization work

«._+0.15% Top-1 Accuracy

841  FQiT fvol-q X @ PTQAVIT
°
. o ge o 82- PSAQ-VIT-V2
Evol-Q’s runtime on Nvidia A100 o
S Q-ViT
DeiT-T DeiT-S DeiT-B  ViT-B g 80 PSAQVIT °
Runtime (mins) 41.5 46.3 41.6 43.2 9 )
2 75 .Mr.BiQ
>
?g.' TerViT
= 76 - °
74 1 .OMSE PTQ QAT
1 rlnin 1 hlour 1 c;ay 5 d1ays
Runtime

[N. Frumkin, D. Gope, D. Marculescu, ICCV’23]
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Summary

" ViTs can offer higher performance than ConvNet models but at a high
computational cost

" MobileTL helps with reducing cost for on-device learning, and similar work for
ViTs relying on low-rank backprop like LBP-WHT achieves both accuracy and
speed

" Post-training quantization in ViTs with Evol-Q increases efficiency of on-device
deployment at no drop in performance

Diana Marculescu © 2024 EIW: Edge Intelligence Workshop at AAAl — 26 February 2024
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