The University of Texas at Austin $$x$ **Chandra Department of Electrical** and Computer Engineering Cockrell School of Engineering

Efficient Learning for Vision Transformers

Diana Marculescu

The University of Texas at Austin

dianam@utexas.edu

enyac.org

Machine learning applications push hardware to its limits

ML models are now used in every modern computing system

Hardware constraints are a key limiting factor for ML on mobile platforms

- **Energy** constraints: object detection drains smartphone battery in 1 hour! [Yang *et al., CVPR'*17]
- Edge-cloud **communication** constraints
- **On-device inference** (**response**) time constraints AND **expensive on-device training**

The cloud to edge continuum vs. privacy trade-offs

What about on-device learning?

Recall:

Hardware constraints are the key limiting factor for DL on mobile platforms

- **Energy** constraints: object detection drains smartphone battery in 1 hour! [Yang *et al., CVPR'*17]
- Even more **expensive** to do **on-device training**

Solution: Transfer learning \rightarrow adapt the model to the edge device

Transfer learning on edge is challenging – even for ConvNets

Fine-tuning is expensive for large models

Requires careful selection of what is fine-tuned and when

Inverted Residual Block (IRB) based models are prevalent on edge

But they require quite a bit of the model resident in memory plus lost of computation

Techniques used so far

- ◆ Freeze certain blocks/layers when fine-tuning
- ◆ Identify which layers are most important for accuracy yet least expensive to fine-tune
- Are challenging to use under limited hardware constraints

MobileTL: Efficient learning with IRBs

Update bias only for intermediate normalization layers

- Adapt distribution difference efficiently
- Approximate activation layer backward as a signed function

◆ Store binary masks for activation layers

[H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu*, AAAI'23*]

Diana Marculescu © 2024 EIW: Edge Intelligence Workshop at AAAI – 26 February 2024 8

Backward activation approximation

Backward approximation for Hard-swish activation function

Fine-tune only task-specific blocks

Freezes input layers

- Low-level features can be shared across different datasets
- ◆ Reduce memory footprint by 8-bit quantization
- ◆ Reduce FLOPs by avoiding calculating gradients for the whole network

Experiments: Less memory and FLOPs

Reduce training memory and FLOPs for MobileNetV2 [1] and V3 [2]

[1] Sandler, M., et al. Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018 [2] Howard, A., et al. Searching for mobilenetv3. In ICCV, 2019

Baseline model comparison

On the Pareto front under the same memory constraint for various datasets

Cai, H., et al. Tinytl: Reduce memory, not parameters for efficient on-device learning. In NeurIPS, 2020 Cai, H., et al. ProxylessNAS: Direct neural architecture search on target task and hardware. In ICLR, 2019 [H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu*, AAAI'23*]

Generalization of MobileTL

MobileTL generalizes to off-the-shelf models

[H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu*, AAAI'23*]

Ablation study

MobileTL is more effective than patches

■ **MobileTL** has lowest latency

■ 45-50% lower latency means 45-50% lower CO₂ footprint

[H.-Y. Chiang, N. Frumkin, F. (J.) Liang, D. Marculescu*, AAAI'23*]

What about vision transformers (ViTs)?

How can we decrease the computational cost for all operations involved in backpropagation (BP) through any linear layer in the ViT model?

- ◆ Accurate Backpropagation is **NOT** necessary
- ◆ Energy concentrates in low-frequency area (top-left corner)
- Gradient of feature maps can be accurately represented with very few elements in low-frequency area

Spectrum of feature gradients in ViT [Unit: db]

Idea:

First project gradient into a low-rank space using $p(\cdot)$, then perform matrix multiplications, and finally project them black using $p^{-1}(\cdot)$, where both p and p^{-1} are implemented with WHT

[Y. Yang, H.-Y. Chiang, G. Li, D. Marculescu, R. Marculescu*, NeurIPS'23*]

LBP-WHT is fast and accurate

[Y. Yang, H.-Y. Chiang, G. Li, D. Marculescu, R. Marculescu*, NeurIPS'23*]

LBP-WHT transfers well across multiple tasks

Image classification on CIFAR100 with EfficientFormers

[Y. Yang, H.-Y. Chiang, G. Li, D. Marculescu, R. Marculescu*, NeurIPS'23*]

ViTs are hard to train: Can we combine best of both worlds?

* Time is measure on 8 A5000 GPUs

⁺ Accuracy is obtained after supervised fine-tuning on ImageNet

SupMAE achieves the best of both worlds

The proposed SupMAE extends MAE by adding 125.9 hours and 125.9 hours and 83.6 a supervised classification branch

* Time is measure on 8 A5000 GPUs

⁺ Accuracy is obtained after supervised fine-tuning on ImageNet

- **Reconstruction loss:** learn middle-level features
- **Classification loss:** learn global features

[F. (J.) Liang, Y. Li, D. Marculescu*, EIW-AAAI'24*]

What about model quantization in transformers?

Quantization enables efficient deployment of models to a variety of inference scenarios

▪ **A compressed model with minimal accuracy degradation is appealing for deployment to edge devices**

Post-training quantization (PTQ) for edge deployment

▪ **The setup for post-training quantization assumes a pre-trained model:**

Quantization in the Loss Landscape of Vision Transformers

Quantized ResNet-18

Quantized DeiT-Tiny

[N. Frumkin, D. Gope, D. Marculescu*, ICCV'23*]

Evol-Q: Minimizing a *global objective* **using contrastive loss**

Global optimization with a contrastive loss is optimal in our setup

Minimize angle with o^+ **Maximize** dissimilarity with o^-

◆ We use the infoNCE loss on network **predictions (the final layer's output), and not on intermediary feature maps**

[N. Frumkin, D. Gope, D. Marculescu*, ICCV'23*]

Recall the uniform quantization formula:

 δ

$$
Q(\mathbf{x}, \delta, \alpha, \beta) = clip(round(\frac{\mathbf{x}}{\delta}), \alpha, \beta)
$$

- **x original floating point vector**
	- quantization scale
- α, β quantization range (min, max)

Goal: learn the optimal quantization scales for each attention block

Evol-Q: a fast, effective method for PTQ

By applying block-wise evolutionary search, we can evaluate small **perturbations on quantization scale in a global manner**

[N. Frumkin, D. Gope, D. Marculescu*, ICCV'23*]

Apply block-wise mutation, evaluate using a global contrastive loss

Results on ViTs

Method

PSAQ-ViT

PTQ4ViT

FO-ViT

 $PSAO-ViT-V2^{\dagger}$

▪ **Top-1 Accuracy on ImageNet for a variety of methods on DeiT and ViT transformers**

[†] Does not quantize Softmax/GELU layers

[†] Does not quantize Softmax/GELU layers

4-bit weights, 8-bit activations (4W8A)

DeiT-S

73.23

76.93

76.36

77.06

DeiT-T

65.57

66.91

68.61

67.29

PSAQ-VIT-V2 achieves comparable accuracy, but is not end-to-end

[N. Frumkin, D. Gope, D. Marculescu*, ICCV'23*]

DeiT-B

77.05

64.39

79.99

79.49

80.15

 $ViT-B$

25.34

78.73

79.50

Results on ViTs

Top-1 Accuracy on ImageNet for LeVIT models

▪ **FQ-ViT is effective on standard ViTs, but Evol-Q can bridge the gap to different vision transformer architectures**

[N. Frumkin, D. Gope, D. Marculescu*, ICCV'23*]

Comparison with Gradient Methods

Evol-Q improves over gradient-based methods, suggesting that **gradient information does not point to a good local minima in the non-smooth loss landscape**

Latency vs. accuracy trade-off

▪ **Evol-Q is pareto-optimal with respect to prior ViT quantization work**

[N. Frumkin, D. Gope, D. Marculescu*, ICCV'23*]

Summary

- VITs can offer higher performance than ConvNet models but at a high computational cost
- MobileTL helps with reducing cost for on-device learning, and similar work for ViTs relying on low-rank backprop like LBP-WHT achieves both accuracy and speed
- Post-training quantization in ViTs with Evol-Q increases efficiency of on-device deployment at no drop in performance

The University of Texas at Austin **Chandra Department of Electrical** and Computer Engineering Cockrell School of Engineering

Thank you! Questions

Acknowledgements:

Students: Hung-Yueh Chiang, Natasha Frumkin, Jeff Liang, Tanvir Mahmud

Support: National Science Foundation, Office of Naval Research (Minerva), iMAGiNE

Consortium at the University of Texas at Austin

EnyAC group webpage: **enyac.org Firms with an algebra com/enyac-group**

