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DNNs are widely used in Al Applications on various Edge Devices
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DNN is most widely used on edge devices, including Phones, Cameras, Cars, etc.



Generative Al has changed Cellphone Usage
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Example: SnapDragon 8 Gen 3 Key Technologies for Edge Al

Snapdragon 8 Gen3 Al Capabilities
Run LLAMAZ2 and Baichuan model on the device and Llama 2 draft
implement LLM voice assistant function on device

« Run Stable Diffusion Text-to-Image model on the device _ .
and generate a 512x512 picture in 0.57s. Speculative Decoding

« Stable Diffusion Outpainting on the device, 8-steps, ~8s

rrrrr ics

SD Text to image 0.57s Llama 2
LLM 20 tokens/s LLAMAZ2

LLM quantization  INT4 Weights, INT8 Act
SD quantization INT4 Weights, INT8 Act
Software mapping Micro-tile inference

NAS for SD SnapFusion: NAS+Robust Training for
Unet, NAS for VAE decoder

SD Step Progressive Step Distillation

Distillation

Heterogeneous Speculative Decoding, CPU run small

Computing model to predict k tokens, NPU run big

model for verification, enhance token
rate by 2x




Our Contributions to Full-Stack DNN Acceleration 2020-2023

o “ — Neural Architecture and Graph Optimizer (AutoGO)
f i Automates Graph mutation with frequent subgraphs
i Neural i Neural Architecture for lightweight deployment
DNN Model | BN | & Graph Training optimization
DAG i i > Increase training performance without additional
Computation ! ! | .
Graph i ! inference cost
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Computation Graph Optimization

The WindRibbon Projec



AutoGO: Automated Computation Graph
Optimization for Neural Network Evolution

Mohammad Salameh!} Keith G. Mills!2*] Negar Hassanpour', Fred X. Han',
Shuting Zhang®, Wei Lu', Shangling Jui®, Chunhua Zhou®, Fengyu Sun®, Di Niu® NeurlPS 2023

"Huawei Technologies Canada. 2Dept. ECE, University of Alberta. YHuawei Kirin Solution, China.

* Replaces manual optimization efforts by ML engineers for deploying ML on é vy |
(edge) devices for hardware friendliness and higher task accuracy =~ S RelLU l
* NOT by searching in a large design space ;' v Vo 2 v Pool
* But given a computation graph of an existing NN, mutating it by subgraph ' [Concat] . T < oy v
replacement. v £ v BN
* Maintain a database of “well performing” subgraphs and segments (prior | C‘i“’ T Proposed é"i BN
knowledge management) R A g Mutation Y v
* Leverages a pretrained neural architecture capacity predictor for different tasks % Y Aid
] 1

e Can explore 1000 mutated architectures in 15 minutes

Our Recent Publications on Computation Graph Optimization for Neural Architecture enhancement/compression:

« Mohammad Salameh, Keith G. Mills, Negar Hassanpour, Fred X. Han, Shuting Zhang, Wei Lu, Shangling Jui, Fengyu Sun, Di Niu. “AutoGO:
Automated Computation Graph Optimization for Neural Network Evolution,” in Proceedings of NeurlPS 2023.

» Keith G. Mills, Di Niu, Mohammad Salameh, Weichen Qiu, Fred X. Han, Puyuan Liu, Jialin Zhang, Wei Lu, Shangling Jui. “AlO-P: Expanding
Neural Performance Predictors Beyond Image Classification,” in Proceedings of AAAI 2023.

« Keith G. Mills, Fred X. Han, Jialin Zhang, Fabian Chudak, Ali Safari, Mohammad Salameh, Wei Lu, Shangling Jui, Di Niu. “GENNAPE:
Towards Generalized Neural Architecture Performance Estimators,” in Proceedings of AAAI 2023.



AutoGO: Automated Computation Graph Optimization

Key Innovations

ﬁvfr — Build a database of frequent subgraphs
i e e e e e e rescessrUSiNG @ NLP tokenization technique
l | l ] Eggg:fg?aur:dos families of >400k+ architectures
e N | including
BiN Rj[u * NB101, NB201, Inception, Two-
- — | e path, HIAML benchmarks, etc.
15%32 Pretrain a P-S-C predictor to estimate
o the reward of each segment mutation
= J Use Transfer Learning (AlO-P and
l = ogmeesesss GENNAPE in AAAI 2023) to transfer
Figure 7: Example of how the BPE-segmented graph in Figure 6(b) is partitioned into Predecessor, g = s‘":“z’ accuracy predictor to different CV tasks
Segment and suCcessor subgraphs based on the selected segment. Specifically, we highlight nodes of e
the selected segment in purple, the predecessor in grey and the successor in yellow. v CG Optimizer:
*  Segment Mutation
* Channel Resolution Propagation
* Topology Optimizer
(a) Convert a model (b) Partition CG into (c) Mutate the graph with a (d) Evaluate Task
to ONNX format Predecessor (P), Segment  segment from a database Accuracy with a pretrained
(Computation Graph) (S), suCcessor (C) and perform resolution P-S-C predictor

propagation



AlO-P: Pretraining NN Performance Predictor for Various CV Tasks

Current Issues: Predictors in NAS are task (ImageClassification), dataset
(CIFAR10) and metric (accuracy) dependent

Goal: provide a generalizable predictor that
Generalizable to different CV tasks with k-Adapter

» First, pretrain a predictor on Image Classification architectures and labels

» learns representations of graph structures of a neural network
» transfer the learning among different CV tasks, datasets and metric
» We infuse the pretrained predictor with knowledge from a new task with

Challenges: scarcity in NAS benchmark datasets for Dense CV Prediction tasks
k-adapters layers

» Human Pose Estimation, SuperResolution, Image Segmentation, ...
» For example, we infuse PCK of models for Human Pose estimation to

enable the predictor to handle new HPE architectures.
Performance prediction for ProxylessNAS architectures for Panoptic
Segmentation on MS-COCO.

Pre-trained, Frozen k-GNM Backbone Graph Encoder

Zero-Shot With Fine-tuning (20 samples)
Inference

: k-GMN k-GMN k-GMN k-GMN Graph
: Layer Layer Layer Layer Agg.

Baseline k-GNN MAE: 56.19% MAE:0.53% —m
Predictor SRCC: 0.562 SRCC: 0.741 '“3.55;‘?;53;%5 e T,
: e P “OFA HPE m .;
Al |67 MAE: 062% >l i HH m
' k-Adapter GNN Encoder
+ Double k- MAE: 0.50% MAE:0.33% T
Adapter SRCC: 0.732 SRCC: 0.868

(Pose Estimation
& Obj. Detection)

Keith G. Mills, Di Niu, Mohammad Salameh, Weichen Qiu, Fred X. Han, Puyuan Liu, Jialin Zhang, Wei Lu, Shangling Jui. “AlO-P: Expanding
Neural Performance Predictors Beyond Image Classification,” in Proceedings of AAAI 2023.



AutoGO Experiment Results on ImageNet

AutoGO results on popular DNNs including ResNet-50, ResNet-101, VCG-16:

v Can improve ImageNet Top-1 accuracy by 1%, without using new operations
or increasing FLOPs

v Can optimize network performance when it is used as backbone for
semantic segmentation and Human Pose Estimation

v Allow customized optimization objectives (accuracy, FLOPs, latency, power)

Improve performance with latency reduction(GPU) on Classification, Segmentation, Human Pose Estimation

Architecture ImageNet Top-1/5 Cityscapes mloU MPII PCK FLOPs[1e9] Lat. [ms]
ResNet-50 Original 74.02%/91.22% 63.42% 82.36% 6.29 7.18
ResNet-50 AutoGO Arch 1 75.34%/92.16% 65.88% 84.07% 6.71 7.50
ResNet-50 AutoGO Arch 2 75.66%/92.45% 66.65% 82.70% 5.88 6.92
ResNet-101 Original 75.09%/91.94% 65.92% 82.77% 13.76 15.86
ResNet-101 AutoGO Arch 1 76.56%/93.09% 67.12% 83.59% 13.66 15.56
ResNet-101 AutoGO Arch 2 75.69%/92.15% 66.38% 84.64% 13.35 15.36
VGG-16 Original 74.18%/91.83% 65.36% 85.92% 30.81 4.65
VGG-16 AutoGO 74.91%/93.23% 66.91% 85.99% 24.34 4.20
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Figure 5: Example of a segment mutation that helped create
ResNet-50 AutoGO Arch 2 from Table 3. A ResNet residual
block is replaced by a HIAML block.

Mohammad Salameh, Keith G. Mills, Negar Hassanpour, Fred X. Han, Shuting Zhang, Wei Lu, Shangling Jui, Fengyu Sun, Di Niu. “AutoGO:
Automated Computation Graph Optimization for Neural Network Evolution,” in Proceedings of NeurlPS 2023.



AutoGO Results on Other Tasks (e.g., Super Resolution)

Table 4: Peak Signal-to-Noise Ratio (PSNR) for EDSR on the DIV2K validation set and several SR
benchmarks in the 2x upscaling setting. Higher is better. We measure latency on an RTX 2080 Ti.

SR Architecture DIV2ZK  Set5 Setl4 BSD100 Urbanl00 Mangal09 FLOPs[1e9] Lat.[ms]
EDSR Original 36.19  36.86 32.57 31.39 29.14 36.09 141 18.04
EDSR AutoGO Arch 1 37.28  38.01 33.62  32.18 31.56 38.49 118 15.38
EDSR AutoGO Arch2  37.27  37.97 33.55 32.16 31.53 38.47 110 14.52
EDSR AutoGO Arch3  37.25  38.01 33.58 32.16 31.46 38.44 105 13.81

EDSR Block

Converting

output Add

blocks  “-----p----- .
Network Output| | :
Nk QU 1 [ade i

Converting
middle
blocks

Converting |
input : :
blocks  ------ TR o

EDSR Block

EDSR Block

Figure 9: Example mutations performed by AutoGO to create EDSR Arch 2 in Table 4 by swapping
out 8 EDSR blocks. Specifically, AutoGO will swap out multiple, simple ‘Conv-ReLU-Conv’ residual
blocks for larger blocks that have operations on both branches.

Mohammad Salameh, Keith G. Mills, Negar Hassanpour, Fred X. Han, Shuting Zhang, Wei Lu, Shangling Jui, Fengyu Sun, Di Niu. “AutoGO:
Automated Computation Graph Optimization for Neural Network Evolution,” in Proceedings of NeurlPS 2023.



Spatial Gradient Scaling: Deep Learning Optimization

» Reparameterization: replacing a subgraph with a
computationally equivalent subgraph by algebraic manipulation
of the weights.

» Goal:

» increase accuracy

» help the model to learn and generalize better

We discovered an equivalence between Branched
Reparametrization and Spatial Gradient Scaling

Model Rep Cost Avg. FLOPs  Avg. params Acc
method (GPU days) (G) (M) (%)
Origin 4.8 1.81 11.7 71.13410.04
DBB* 8.1 4.13 26.3 70.99
ResNet-18 DyRep* 6.3 2.42 16.9 71.58
DyRep 9.1 2.92 22.1 ?1.5[].}.()_();;
SGS (DUFS) 5.1 1.81 11.7 ?1.65-}-(]_()5
Origin 5.3 3.66 21.8 ?4.17_].(]_()5
DBB* 12.8 8.44 49.9 74.33
ResNet-34 ) Rep* 7.7 4.72 33.1 74.68
DyRep 10.6 4.95 38.3 74.4040.03
SGS (ours) 5.8 3.66 21.8 74.62410.05
Origin 7.5 4.09 25.6 76.9510.05
DBB* 13.7 6.79 40.7 76.71
ResNet-50 DyRep* 8.5 5.05 315 77.08
DyRep 11.0 5.84 38.3 771141 0.03
SGS (DU.I'S) 7.9 4.09 25.6 ??.1[]-]—(]_()1

Table 2: Results on ImageNet dataset. We use the official implementation of DyRep (Huang et al.,
2022) on 8 NVIDIA Tesla V100 GPUs. FLOPs and Parameters are averaged across DyRep runs.

Results marked with * are taken from DyRep paper: the rest are our runs averaged over 3 seeds.
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Alexander Detkov, Mohammad Salameh, Muhammad Fetrat, Jialin Zhang, Robin Luwei, Shangling Jui, Di Niu. "Reparameterization through
Spatial Gradient Scaling," in Proceedings of the Eleventh International Conference on Learning Representations (ICLR 2023).



SnapFusion Our model

Lightweight Diffusion on Edge (Text to Image)

Method: Achievements

* Performed finetuning for velocity predictionon ¢ Reduced architecture latency by 78% with
Midjourney dataset AutoGO

* Neural Architecture Search with AutoGO * We beat SnapFusion on 6k MS-COCO in terms

et . of generation quality
* Step Distillation on MidJourney 1.3M dataset to

reduce inference steps

* CLIP score denoting better semantics

(higher is better) A photo of an astronaut riding
. . . a horse on mars
* Generation performance improvement with: - While maintaining comparable FID i.e
. Adaptive Jump Step-Distillation and generation quality (lower is better) SnapFusion is able to generate a 512-by-512-pixel image,
Semantic Alignment with Attention requires 8 steps

* Faithful and Realistic Text-to-Image
Generation with Adaptive prompt-

weighting _ _ Prompt: “Lion riding a bike in Paris

36
—8— SD1p5-base-v(32-steps)

—8— Abrupt-KD#35-distilled(16 steps)-stage2
—8— Abrupt-KD#35-distilled(8 steps)-stage3
—&— Snap-fusion(8-steps)

32

FID score

26 A

24 A

“’\‘Ul\‘ ~0 g .
2 T Vil G v
27 28 29 30 31 2 33 34 . ‘

CUP score Original (32steps, 55.9sec) Original (8steps, 14sec) Our reduced and optimized
(8steps, <3sec)
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SD (Text-to-Image) for Edge

8-step model compared to SnapFusion (8 steps)

« Better Quality and Semantics

3d render of voxel p?nk
elephant

SnapFusion (8
steps)

A photo of an astronaut riding
a horse on mars

A beautiful image of a cute animal
surrounded by natural light,
capturing their delicate beauty and
charm

Ours — 8 steps SnapFusion




SD-based Inpainting for Edge

Optimize diffusion-based inpainting model for edge deployment

» Used Progressive Step Distillation to reduce UNet inference to 1-4
steps, while maintaining comparable output quality

= Used UFOGen to distill a 50-step model to a few-step generator following Generative
Adversarial training

= with minimal drop in output quality
= Estimated <1 second inference for 512 x 512 resolution

inpainting

. . UFOGen
Original 1 Step

Curation Score

Metric Two numbers closer = comparable PQ to
Eval .
baseline
UFOGen 1 Step [159, 201]
StepDistill 4 Steps [148, 167]
Human # Acceptable,
Eval # Good PQ but has minor # Bad PQ
issues
Baseline 20 Steps 248 68 113
StepDistill 4 Steps 236 83 110

StepDistill
4 Steps

Baseline
32 Steps




Software Mapping (Tensor Fusion)
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Tiling and Fusion: Software Mapping Techniques to Reduce Memory Access

Operational intensity is the number of compute operations an algorithm takes divided by the number of byte
accesses it requires and is a hardware-agnostic measurement.
The most computationally expensive parts of a 7B parameter LLM are the Attention layers, which ensure next token
predictions are weighted based on the relevance of previous tokens.

Attention Block
1. Matmul(Q, KT); Q, K € RheadsizexseQSizeXEmbsize

2. Mul (QKT,Jﬁ) sdympy € R
3. Softmax( QK7 )
4. Matmul(softmax,V) =777

% Latency = MatMul + Mul + Softmax + MatMul
< Issues: Memory bound, low compute utilization

KT

Warp 1 Warp 2 Warp 3 Warp 4

Q
Warp 1-4 Warp1

Warp 2
Warp 3

Warp 4

Accessed by all warps

Split across different warps

(a) FLASHATTENTION

KT

Warp 1-4
Q 14

Warp 1
Warp 2 Warp 1-4
Warp 3

Warp 4
Accessed by all warps

Split across different warps

(b) FLASHATTENTION-2

Figure 3: Work partitioning between different warps in the forward pass

FlashAttention (& v2): For the GPU, perform tiling on K or Q, and allocate

the fused tile computation to different Warps.

However, FlashAttention cannot directly benefit the edge devices.

Different hardware architecture: resource binding is different but less

explored in the literature

Different parallelism: aim more aggressively at hiding memory

operations



Tiling and Resource Binding as a Scheduling Problem

. . . . T . c||C Cl|C
Given the accelerator HW configuration, resource binding optimization is to bind the flow of M tile 1 M Step 1

compute and mem operations for each tile onto hardware components, while reducing DDR
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Tiling and Resource Binding as a Scheduling Problem

+* Use optimization to solve the following scheduling problem:

1. Pipeline the operations:
° Matmul(Q; KT); Q,K (= RheadsizexseqsizeXEmbsize
. T 1 ).
Mul (QK , —demb)’dem” €R

. Softmax( QK )
\ demb

2. Find the optimal split factor “m” to split Q
3. Find the optimal number of consecutive pipelined chunks

of softmax (Jff_Tb) to be sent to the last Matmul operator.

% Example inference time for certain choices:
The best parameters for Pipelined-Attention should be searched for

Baseline (no fusion) (16,4096,40)

PipelinedAttention-v1 (16,4096,40) - 16 24.1%

PipelinedAttention-v2.1 (16,4096,40) 512 16 31.15%

2B ADDE AL

/ 16=40= 4035

" )

S = 015517

16 A0AE=A006

3BB

16 A0AE=A006




Hardware Configuration
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UNICO: Robust Accelerator Hardware Configuration Search

24 MoBo Trial
Total sampled HW configs = 2 X10

Innovation:

Use Successive halving to reduce SW search budget for some “bad” HW
parameters

Proposed robust HW search, based on power/latency sensitivity to SW, to

improve generalization of the found HW to different unseen DNNs

On open-source platform:

Training NN: MobileNetV2, ResNet,
SRGAN, VGG;
Tested on 7 new NNs: UNICO vs

HASCQO, 44% improvement

Both convergence speed and robustness

to new DNN workloads outperform

S

PE

L,

[ HW DSE: (c.g. # of PEs, L1- ]
L2 Buffer sizes, NoC BW)

Loop Order: (x,v,c,k,1,5)
.__Loop Parallelization: k,c

For x; € (0,7.)
Fory, €(0,7.)
Forep € (0,7,)
o, Fork,€(0,7:)
% Forty € (0, 7))

Fors; € (0,7.)
Par_For k;, € (0, PEy)
Par_For ¢, € (0, PEy)

15t MoBo Trial
Total sampled HW configs = 1 X10
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SW Mapping DSE: (Tensorization,
Tiling, Order, Parallelisation)

DaVinci NPU verification:

+ Model: Denoise U-Net, 6 variants of
FSRCNN, DLSS

« Search: Use Power as the main target

HASCO Figure 1: A typical 2D spatial accelerator HW design compo-
nents (e.g. (PEy, PEy), Ly and L buffer sizes)
UNICO HW config. Vs. Original DaVinci HW Config
Original 32 32 64 |unchanged| unchanged |unchanged
UNICO found 128 8 16 |unchanged| unchanged | unchanged

Bahador Rashidi, Chao Gao, Shan Lu, Zhisheng Wang, Di Niu, Fengyu Sun. "UNICO: Unified Hardware Software Co-Optimization for
Robust Neural Network Acceleration”, in IEEE/ACM International Symposium on Microarchitecture (MICRO 2023)

* By adjusting LOA/B/C buffer parameters,
on DLSS can achieve 54% power reduction;
* Onall other NNs, there is no power or
lateny degradation




