
Di Niu

Professor
Department of Electrical and Computer Engineering
University of Alberta, Edmonton, Canada

Research Areas:
AI：Deep learning acceleration, AutoML, Computer Vision, NLP
Distributed Systems: Federated Learning, Edge and Cloud
computing, Parallel Computing Systems
Data Mining: graph mining and reasoning, GNNs

PhD students（11）
Qikai Lu, Keith Mills, Adel Ameri, Jerry
Chen, Shengyao Lu, Jiuding Yang, Yakun Yu,
Liyao Jiang, Linxuan Zhang, Ruichen Chen,
Amirhosein Ghasemabadi

MSc students（5）
Ruiqing Tian, Mohammadali Shakerdargah,
Hongxuan Liu, Juxin Fa, Mohammadamin
Khoshko

Automated Neural Network Acceleration on Edge:
from Convolutional Networks to Transformers

DNNs are widely used in AI Applications on various Edge Devices

Face Recognition for
Unlocking/Payment

Gesture Control

DNN is most widely used on edge devices, including Phones, Cameras, Cars, etc.

Semantic Segmentation
Photo Credit: Ambarella AI Vision Processor
for edge applications

Magic Editor Video Boost Best Take

Assistant with Bard

◼ 5hours per day
◼ Content acquisition

◼ Short video/Long
video

◼ News / Search
◼ Listening to music

◼ Shoppers
◼ Social Networking
◼ Games

SmartPhone -> Mobile Internet

◼ >5hours per day
◼ Understanding:

◼ Dealing with unstructured
data

◼ Diversified interaction
modes

◼ Natural language instead of
programming language

◼ Generation:
◼ Expert level beyond

ordinary humans
◼ Reasoning: self-learning

Search → Push → GenAI → ?

Generative AI has changed Cellphone Usage

Generative AI -> a New Era

Smart Phone AI Phone

Snapdragon 8 Gen3 AI Capabilities
• Run LLAMA2 and Baichuan model on the device and

implement LLM voice assistant function on device
• Run Stable Diffusion Text-to-Image model on the device

and generate a 512x512 picture in 0.57s.
• Stable Diffusion Outpainting on the device, 8-steps, ~8s

Example: SnapDragon 8 Gen 3 Key Technologies for Edge AI

8Gen3

SD Text to image 0.57s

LLM 20 tokens/s LLAMA2

LLM quantization INT4 Weights, INT8 Act

SD quantization INT4 Weights, INT8 Act

Software mapping Micro-tile inference

NAS for SD SnapFusion: NAS+Robust Training for
Unet，NAS for VAE decoder

SD Step
Distillation

Progressive Step Distillation

Heterogeneous
Computing

Speculative Decoding，CPU run small
model to predict k tokens，NPU run big
model for verification, enhance token
rate by 2x

Speculative Decoding

SnapFusion UNet

SW/HW co-optimization method for accelerator design (UNICO)

Efficient SW/HW co-search algorithm

Generalize HW configurations to multiple DNN workloads

Neural Architecture and Graph Optimizer (AutoGO)

Automates Graph mutation with frequent subgraphs

for lightweight deployment

Training optimization

Increase training performance without additional

inference cost

Graph Fusion

Fusing ops/layers

Depth First execution

Tensor Optimization

Tiling, loop ordering, resource binding

Neural
Network

Computation
Graph

Operator
Mapping

NPU
Hardware

Hardware

Software
Mapping/
Compiler）

DNN Model
DAG

Computation
Graph

Neural Architecture

& Graph

Hardware

Configuration

Our Contributions to Full-Stack DNN Acceleration 2020-2023

Software Mapping

The WindRibbon Project Proprietary and Confidential. © 2015-2020 The WindRibbon Project. All rights reserved.

Computation Graph Optimization

• Replaces manual optimization efforts by ML engineers for deploying ML on
(edge) devices for hardware friendliness and higher task accuracy

• NOT by searching in a large design space
• But given a computation graph of an existing NN, mutating it by subgraph

replacement.
• Maintain a database of “well performing” subgraphs and segments (prior

knowledge management)
• Leverages a pretrained neural architecture capacity predictor for different tasks
• Can explore 1000 mutated architectures in 15 minutes

Our Recent Publications on Computation Graph Optimization for Neural Architecture enhancement/compression:

• Mohammad Salameh, Keith G. Mills, Negar Hassanpour, Fred X. Han, Shuting Zhang, Wei Lu, Shangling Jui, Fengyu Sun, Di Niu. “AutoGO:

Automated Computation Graph Optimization for Neural Network Evolution,” in Proceedings of NeurIPS 2023.

• Keith G. Mills, Di Niu, Mohammad Salameh, Weichen Qiu, Fred X. Han, Puyuan Liu, Jialin Zhang, Wei Lu, Shangling Jui. “AIO-P: Expanding

Neural Performance Predictors Beyond Image Classification,” in Proceedings of AAAI 2023.

• Keith G. Mills, Fred X. Han, Jialin Zhang, Fabian Chudak, Ali Safari, Mohammad Salameh, Wei Lu, Shangling Jui, Di Niu. “GENNAPE:

Towards Generalized Neural Architecture Performance Estimators,” in Proceedings of AAAI 2023.

NeurIPS 2023

(a) Convert a model

to ONNX format
(Computation Graph)

(d) Evaluate Task

Accuracy with a pretrained
P-S-C predictor

(c) Mutate the graph with a

segment from a database

and perform resolution
propagation

(b) Partition CG into

Predecessor (P), Segment
(S), suCcessor (C)

Key Innovations

• Build a database of frequent subgraphs

using a NLP tokenization technique

(BPE) based on several architectural

families of >400k+ architectures

including

• NB101, NB201, Inception, Two-

path, HiAML benchmarks, etc.

• Pretrain a P-S-C predictor to estimate

the reward of each segment mutation

• Use Transfer Learning (AIO-P and

GENNAPE in AAAI 2023) to transfer

accuracy predictor to different CV tasks

• CG Optimizer:

• Segment Mutation

• Channel Resolution Propagation

• Topology Optimizer

AutoGO: Automated Computation Graph Optimization

AIO-P: Pretraining NN Performance Predictor for Various CV Tasks
➢ Current Issues: Predictors in NAS are task (ImageClassification), dataset

(CIFAR10) and metric (accuracy) dependent

➢ Goal: provide a generalizable predictor that

➢ learns representations of graph structures of a neural network

➢ transfer the learning among different CV tasks, datasets and metric

➢ Challenges: scarcity in NAS benchmark datasets for Dense CV Prediction tasks

➢ Human Pose Estimation, SuperResolution, Image Segmentation, …

Generalizable to different CV tasks with k-Adapter

➢ First, pretrain a predictor on Image Classification architectures and labels

➢ We infuse the pretrained predictor with knowledge from a new task with
k-adapters layers

➢ For example, we infuse PCK of models for Human Pose estimation to
enable the predictor to handle new HPE architectures.

Scheme Zero-Shot
Inference

With Fine-tuning (20 samples)

Baseline k-GNN
Predictor

MAE: 56.19%
SRCC: 0.562

MAE: 0.53%
SRCC: 0.741

+ Label Scaling MAE: 0.76%
SRCC: 0.119

MAE: 0.62%
SRCC: 0.297

+ Double k-
Adapter

(Pose Estimation
& Obj. Detection)

MAE: 0.50%
SRCC: 0.732

MAE: 0.33%
SRCC: 0.868

Keith G. Mills, Di Niu, Mohammad Salameh, Weichen Qiu, Fred X. Han, Puyuan Liu, Jialin Zhang, Wei Lu, Shangling Jui. “AIO-P: Expanding
Neural Performance Predictors Beyond Image Classification,” in Proceedings of AAAI 2023.

Performance prediction for ProxylessNAS architectures for Panoptic
Segmentation on MS-COCO.

AutoGO Experiment Results on ImageNet

AutoGO results on popular DNNs including ResNet-50, ResNet-101, VCG-16:

✓ Can improve ImageNet Top-1 accuracy by 1%, without using new operations

or increasing FLOPs

✓ Can optimize network performance when it is used as backbone for

semantic segmentation and Human Pose Estimation

✓ Allow customized optimization objectives (accuracy, FLOPs, latency, power)

Improve performance with latency reduction(GPU) on Classification, Segmentation, Human Pose Estimation

Mohammad Salameh, Keith G. Mills, Negar Hassanpour, Fred X. Han, Shuting Zhang, Wei Lu, Shangling Jui, Fengyu Sun, Di Niu. “AutoGO:
Automated Computation Graph Optimization for Neural Network Evolution,” in Proceedings of NeurIPS 2023.

AutoGO Results on Other Tasks (e.g., Super Resolution)

Mohammad Salameh, Keith G. Mills, Negar Hassanpour, Fred X. Han, Shuting Zhang, Wei Lu, Shangling Jui, Fengyu Sun, Di Niu. “AutoGO:
Automated Computation Graph Optimization for Neural Network Evolution,” in Proceedings of NeurIPS 2023.

Original
Model

(simple)

Training Model (complex)
Inference Model(simple)

Graph
Rewriting

Graph
Rewriting

Increase
topological
complexity

Decrease
topological
complexity

with
equivalence

more complex to train but has “higher
capacity” than starting model.

Same inference result but
faster

Spatial Gradient Scaling: Deep Learning Optimization

➢ Reparameterization: replacing a subgraph with a
computationally equivalent subgraph by algebraic manipulation
of the weights.

➢ Goal:

➢ increase accuracy

➢ help the model to learn and generalize better

We discovered an equivalence between Branched
Reparametrization and Spatial Gradient Scaling

Spatial Gradient ScalingOriginal Training

Alexander Detkov, Mohammad Salameh, Muhammad Fetrat, Jialin Zhang, Robin Luwei, Shangling Jui, Di Niu. "Reparameterization through
Spatial Gradient Scaling," in Proceedings of the Eleventh International Conference on Learning Representations (ICLR 2023).

Lightweight Diffusion on Edge (Text to Image)

Achievements

• Reduced architecture latency by 78% with
AutoGO

• We beat SnapFusion on 6k MS-COCO in terms
of generation quality

• CLIP score denoting better semantics
(higher is better)

• While maintaining comparable FID i.e
generation quality (lower is better)

Method:

• Performed finetuning for velocity prediction on
Midjourney dataset

• Neural Architecture Search with AutoGO

• Step Distillation on MidJourney 1.3M dataset to
reduce inference steps

• Generation performance improvement with:

• Adaptive Jump Step-Distillation and
Semantic Alignment with Attention

• Faithful and Realistic Text-to-Image
Generation with Adaptive prompt-
weighting

Original (32steps, 55.9sec) Original (8steps, 14sec) Our reduced and optimized
(8steps, <3sec)

Prompt: “Lion riding a bike in Paris

SnapFusion Our model

SnapFusion is able to generate a 512-by-512-pixel image,
requires 8 steps

SD (Text-to-Image) for Edge

8-step model compared to SnapFusion (8 steps)

• Better Quality and Semantics

Ours (8 steps) SnapFusion (8
steps)

Ours – 8 steps SnapFusion

SD-based Inpainting for Edge
Metric

Eval

Curation Score

Two numbers closer = comparable PQ to

baseline

UFOGen 1 Step [159, 201]

StepDistill 4 Steps [148, 167]

Optimize diffusion-based inpainting model for edge deployment

▪ Used Progressive Step Distillation to reduce UNet inference to 1-4
steps, while maintaining comparable output quality

▪ Used UFOGen to distill a 50-step model to a few-step generator following Generative
Adversarial training

▪ with minimal drop in output quality

▪ Estimated <1 second inference for 512 x 512 resolution

UFOGen
1 Step

StepDistill
4 Steps

Baseline
32 Steps

Human

Eval
Good PQ

Acceptable,

but has minor

issues

Bad PQ

Baseline 20 Steps 248 68 113

StepDistill 4 Steps 236 83 110

Original

inpainting

The WindRibbon Project Proprietary and Confidential. © 2015-2020 The WindRibbon Project. All rights reserved.

Software Mapping (Tensor Fusion)

Tiling and Fusion: Software Mapping Techniques to Reduce Memory Access

Attention Block
1.𝑀𝑎𝑡𝑚𝑢𝑙 𝑄, 𝐾𝑇 ; 𝑄, 𝐾 ∈ 𝑅ℎ𝑒𝑎𝑑𝑠𝑖𝑧𝑒×𝑆𝑒𝑞𝑠𝑖𝑧𝑒×𝐸𝑚𝑏𝑠𝑖𝑧𝑒

2.𝑀𝑢𝑙 𝑄𝐾𝑇 ,
1

𝑑𝑒𝑚𝑏
; 𝑑𝑒𝑚𝑏 ∈ 𝑅

3. 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑒𝑚𝑏

4.𝑀𝑎𝑡𝑚𝑢𝑙 𝑠𝑜𝑓𝑡𝑚𝑎𝑥, 𝑉

❖ 𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑀𝑎𝑡𝑀𝑢𝑙 + Mul + Softmax + MatMul
❖ Issues：Memory bound, low compute utilization

FlashAttention (& v2): For the GPU, perform tiling on K or Q, and allocate

the fused tile computation to different Warps.

However, FlashAttention cannot directly benefit the edge devices.

• Different hardware architecture: resource binding is different but less

explored in the literature

• Different parallelism: aim more aggressively at hiding memory

operations

Operational intensity is the number of compute operations an algorithm takes divided by the number of byte

accesses it requires and is a hardware-agnostic measurement.

The most computationally expensive parts of a 7B parameter LLM are the Attention layers, which ensure next token

predictions are weighted based on the relevance of previous tokens.

Tiling and Resource Binding as a Scheduling Problem

Cube Queue

Vector Queue

Memory
Queue

Memory
Queue

Wait flag 0

Wait flag 1

Ld L1
with
Q_i

S
F
0

Cube MM i_j

Wait flag 3
Store to DDR

output_mm_i_j

16 times

W
F
2

Ld L1
with
K_i

Ld L0A
with
Q_i_j

Ld L0B
with
K_i_j

Wait flag 2

16 times

Wait flag 0

32 times

W
F
2

W
F
2

S
F
3

S
F
1

Wait flag 3

Ld UB with
oyput_mm_i

Ld UB with
input_mul

Wait flag 2

Mul
i

Store to
DDR

output_mul
_i

Wait flag 1

Wait flag 3

16 ×
4096

2
times

W
F
2

W
F
2

S
F
3

Ld UB with
output_mul_

i
Wait flag 2

Softmax i

Store to DDR
ouput_sm_i

Wait flag 1

16 × 4096 times

S
F
1

S
F
3

Given the accelerator HW configuration, resource binding optimization is to bind the flow of

compute and mem operations for each tile onto hardware components, while reducing DDR

memory access and parallelizing the operations.

Figue credit: TileFlow (MICRO 2023)

❖ Use optimization to solve the following scheduling problem:
1. Pipeline the operations:

• 𝑀𝑎𝑡𝑚𝑢𝑙 𝑄, 𝐾𝑇 ; 𝑄, 𝐾 ∈ 𝑅ℎ𝑒𝑎𝑑𝑠𝑖𝑧𝑒×𝑆𝑒𝑞𝑠𝑖𝑧𝑒×𝐸𝑚𝑏𝑠𝑖𝑧𝑒

• 𝑀𝑢𝑙 𝑄𝐾𝑇 ,
1

𝑑𝑒𝑚𝑏
; 𝑑𝑒𝑚𝑏 ∈ 𝑅

• 𝑆𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

𝑑𝑒𝑚𝑏

2. Find the optimal split factor “𝒎” to split 𝑄
3. Find the optimal number of consecutive pipelined chunks

of 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 𝑄𝐾𝑇

𝑑𝑒𝑚𝑏
to be sent to the last Matmul operator.

❖ Example inference time for certain choices:

• The best parameters for Pipelined-Attention should be searched for

Method 𝑸,𝑲,𝑽𝒔𝒉𝒂𝒑𝒆 𝒍𝒇𝒂𝒄𝒕𝒐𝒓 𝒎𝒇𝒂𝒄𝒕𝒐𝒓 Latency Reduction for

Attention

Baseline (no fusion) (16, 4096, 40) - - -

PipelinedAttention-v1 (16, 4096, 40) - 16 24.1%

PipelinedAttention-v2.1 (16, 4096, 40) 512 16 𝟑𝟏. 𝟏𝟓%

Tiling and Resource Binding as a Scheduling Problem

The WindRibbon Project Proprietary and Confidential. © 2015-2020 The WindRibbon Project. All rights reserved.

Hardware Configuration

UNICO: Robust Accelerator Hardware Configuration Search

Innovation：

• Use Successive halving to reduce SW search budget for some “bad”HW

parameters

• Proposed robust HW search, based on power/latency sensitivity to SW, to

improve generalization of the found HW to different unseen DNNs

On open-source platform：

• Training NN：MobileNetV2，ResNet，

SRGAN， VGG;

• Tested on 7 new NNs：UNICO vs

HASCO, 44% improvement

• Both convergence speed and robustness

to new DNN workloads outperform

HASCO

DaVinci NPU verification：

• Model：Denoise U-Net, 6 variants of

FSRCNN, DLSS

• Search： Use Power as the main target

• By adjusting L0A/B/C buffer parameters，
on DLSS can achieve 54% power reduction;
• On all other NNs, there is no power or
lateny degradation

UNICO HW config. Vs. Original DaVinci HW Config

HW L0A L0B L0C … Cube Area

Original 32 32 64 unchanged unchanged unchanged

UNICO found 128 8 16 unchanged unchanged unchanged

Bahador Rashidi, Chao Gao, Shan Lu, Zhisheng Wang, Di Niu, Fengyu Sun. "UNICO: Unified Hardware Software Co-Optimization for

Robust Neural Network Acceleration", in IEEE/ACM International Symposium on Microarchitecture (MICRO 2023)

