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Motivation

▪ Deployment of CV tasks is a quality-cost trade-off

▪ Specialized chips/devices

▪ Quantization, pruning, …

▪ Most effective: different models

→ 500 models of the TIMM database

▪ We will show how to

▪ gain ~3x speed-up

▪ at equal accuracy, 

▪ compatible with all other optimizations!
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Efficient Models, Accurate Models

▪ How to measure efficiency?

▪ Simplified metric for compute: MatMul & Conv 

→ count number of multiply-accum. operations

▪ Different types of DNNs

▪ basic: ResNet

▪ compute-optimized: MobileNet/EfficientNet, …

▪ top-accuracy: various ViT

▪ How are they built?

▪ normal convolution layers / residual layers

▪ depth-wise separable convolutions

▪ transformer blocks
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Efficient Models, Accurate Models

transformer blocks

MobileNetV2 block
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Dataset Intricacies

▪ Easy and hard 

examples

▪ Fine-grained 

distinction is 

harder

▪ 1000 classes
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Easy & Hard Dataset Items

▪ What are these?

▪ Basketball & dog. Easy!

▪ Assuming simple classes…

▪ How about now?

▪ Basketball. Still easy!

▪ But what dog breed?!?!

That is… hard!

(it’s a Norfolk terrier)

▪ ImageNet: 1k classes, 118 dogs

▪ Some inputs are just harder

▪ more detailed classification

▪ harder to identify

21: 'kite',

22: 'bald eagle,

23: 'vulture’,

…

173: 'Ibizan hound',

174: 'Norwegian elkhound’,

…

181: 'Bedlington terrier',

182: 'Border terrier',

183: 'Kerry blue terrier',

184: 'Irish terrier',

185: 'Norfolk terrier’,

…

275: 'African hunting dog',

…

415: 'bakery',

416: 'balance beam',

417: 'balloon',

418: 'ballpoint pen', … 

430: 'basketball’,

…

999: toilet paper'

Do we need to spend the same 

effort for all (easy & hard) queries?
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Dealing with Varying Complexity: Early Exit Models

▪ Simple idea: let the DNN stop computation (exit) early 

when sufficiently confident

▪ Many papers on this… e.g., BranchyNet

▪ Fundamental problems: 

▪ we need to train a specialized model, find a good structure

▪ field-of-view/receptive field: 

after 2 layers, the output cannot “see” the entire input

BranchyNet model

Fast/simple exit

Medium exit

Slow/difficult exit

Is this a dog?
If yes, what breed?

→ fundamental 

limitation!



HUAWEI   | ZURICH RESEARCH CENTER

14

HUAWEI   | ZURICH RESEARCH CENTER

DNN Cascades: Concept

▪ Back to the high level, simple intuition:

Why ask the master (expensive) when you can ask the apprentice (cheaper)?

▪ The student can tell you if they are confident enough in their answer, refer you to the expert if needed

▪ Just use existing pre-trained models – fully optimized, no “guess work”

▪ What do we save? If 𝜏0 such that 𝛽0 = Pr max
𝑖
(𝒑0,𝑖) ≥ 𝜏0 = 75% of cases can exit early:

𝑐𝑎𝑣𝑔 = 𝑐0𝛽0 + 𝑐0 + 𝑐1 1 − 𝛽0 = 3.5 GFLOP/frame vs. 𝑐1 = 10 GFLOP/frame

max
𝑖
(𝒑0,𝑖) ≥ 𝜏0?

𝒛𝟏
𝑀1

𝒑𝟏

Large model (cost 𝑐1 = 10 GMAC/frame)

no

yes

𝑦 = arg max
𝑖

(𝒑0,𝑖) 𝑦 = arg max
𝑖

(𝒑1,𝑖)

𝒛𝟎
𝑀0

𝒑𝟎

Small model (cost 𝑐0 = 1 GMAC/frame)

0.70

0.28

0.02
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DNN Cascade: Result of Basic Method

▪ base models: TIMM database

500+ pre-trained(!) models

▪ baseline pareto

interpolate between 

2 models by randomly 

switching between them

▪ individual cascades

Cascade trade-off 

(sweep 𝜏0) of 2 models

▪ cascade pareto front

The best trade-off among 

all pairs of models

▪ experimental setup

sweep validation set to find best 

model combination & evaluate

→ Massive (2-3.8×!!) speed-ups for >80% accuracy

→ spans entire Pareto-front (always use this!)

→ no re-training or manual engineering
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DNN Cascade: Decision Criteria & Ensembling

▪ Decision Criteria

▪ Max Softmax (so far): max
𝑖
(𝒑0,𝑖) ≥ 𝜏0

▪ Shannon entropy (information/uncertainty): −σ𝑖 𝒑0,𝑖 log 𝒑0,𝑖 ≥ 𝜏0

▪ Softmax margin (margin to 2nd best guess): max
𝑖
(𝒑0,𝑖) − max

𝑗≠𝑖
(𝒑0,𝒋) ≥ 𝜏0

▪ Logits margin (Softmax margin w/o norm.): max
𝑖
(𝒛0,𝑖) − max

𝑗≠𝑖
(𝒛0,𝒋) ≥ 𝜏0

▪ Ensembling

▪ Multiple DNNs (experts) can form better consensus

▪ applies when no early exit

▪ majority-voting or averaging

▪ Weight of experts has to consider their skill level:

→ temperature scaling to calibrate confidence 𝒑0,𝑖 =
𝑒 Τ𝒛𝑖 𝑇

σ𝑗 𝑒
Τ𝒛𝑗 𝑇

→ use max softmax
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DNN Cascade: Results with Ensembling

▪ ensembling

provides a gain 

at the top

▪ ensembling only 

worthwhile if out 

of alternatives 

(need similar-

sized models)
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DNN Cascade: Multi-Model Cascades

▪ So far: one small and one large model

▪ We can also use 3 models: 

▪ Or more generally: 

Small model Medium model Large model

exit now?
no

yes

exit now?
no

yes
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DNN Cascade: Results with 3 Models

▪ Clearly above state-of-the-art

▪ Another clear performance leap: 1.7x to 1.95x at 80%

▪ Even more effective at the top: from ~3x to ~4.5x speed-up

previously: 
2 model cascades
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The world is not ideal: Distribution Shifts

▪ Data during execution can be different than during training and threshold selection

▪ Test with ImageNetV2 (much harder dataset) w/o fine-tuning → more hard cases
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The world is not ideal: MAC operations v. real execution time

▪ The smaller/optimized models are not as much faster as MAC count suggests (not cascade-related)

▪ 2.8-3x speed-up can be achieved in practice with real device measurements

MAC-based speed-up
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Only Image Classification? NLP Results

▪ SST-2: Stanford Dataset for predicting Sentiment from 

longer Movie Reviews

▪ QNLI: Question-answering Natural Language 

Inference (based on SQuAD v1.1 – Stanford Question 

Answering Dataset)

Context: “As at most other universities, Notre Dame's 

students run a number of news media outlets. The nine 

student-run outlets (…)”

Q: “When did the Scholastic Magazine of Notre dame 

begin publishing?”

A: “September 1876”

▪ Challenge: fewer datasets – more possible? 

The method generalizes to other datasets, task types
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Conclusion

A simple concept: Don’t bother the master with questions the apprentice can answer

The good

▪ ~3x speed-up (~energy savings, ~cost reduction) at equal accuracy

▪ No modifications to hardware or low- to medium-level software

▪ No (re-)training of any models

▪ No engineering effort

The bad / limitations:

▪ Need to store the smaller model, too (~10% more); need multiple models to be available

▪ Worst-case execution time is worse (~10% longer), but average is much better (~3x)

→ good for data center (it evens out) & embedded/mobile (far less energy), no benefit for real-time

▪ Distribution shifts can impact effectiveness

Apply this whenever possible, 

save 3x cost/energy almost for free
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