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Vision transformers (ViTs) as a CV engine
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Vision transformers (ViTs) have emerged as the new architecture for computer vision
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ViTs are hard to train: Can we combine best of both worlds?

Supervised training Self-supervised pre-training
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Training time” | ImageNet acc.”
394 hours | 83.6

X Vv

Training time” | ImageNet acc.
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* Time is measure on 8 A5000 GPUs
* Accuracy is obtained after supervised fine-tuning on ImageNet
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SuUupMAE achieves the best of both worlds
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Training time” | ImageNet acc.”
125.9 hours | 83.6

The proposed SupMAE extends MAE by adding

a supervised classification branch J J

" Time is measure on 8 A5000 GPUs
* Accuracy is obtained after supervised fine-tuning on ImageNet
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SuUpMAE learns better global features than MAE

MAE SupMAE (Ours)
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= t-SNE visualization of pre-trained checkpoints”

SupMAE’s features can be better clustered into true categories, revealing that
better global features are learnt with proposed supervised branch

" MAE / SupMAE is pre-trained on ImageNet. We select three categories in CIFAR-10 validation set for t-SNE visualization.
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Comparison with supervised and self-supervised methods

Table 1: Comparison with supervised and self-supervised pre-training methods All methods are using ViT-B/16 model.
Besides the number of pre-training (PT) and fine-tuning (FT) epoch, we further estimate the wall-clock time for PT and FT,
benchmarked on 8 A5000 GPUs. The normalized cost is relative to SupMAE. SupMAE shows a great efficiency and can achieve
the same accuracy as MAE using only 30% compute.

PT cost FT cost Total cost Normalized Topl

method PT epochs (Hours) FT epochs (Hours)  (Hours) cost acc.

Supervised pre-training methods.

ViT (Dosovitskiy et al. 2020) - - - - - - 77.9
DeiT (Touvron et al. 2021) 300 91.5 - - 91.5 0.73x 81.8
Naive supervised (He et al. 2021) 300 90 - - 90 0.71x 82.3

|  SupMAE(Ours) 400 95.9 100 30 125.9 1% 83.6 |

" Compared with other supervised methods, SUupMAE achieves better
performance

" Compared with self-supervised methods, SupMAE achieves comparable
performance with much less compute e.g., 30% of MAE
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SupMAE is more training efficient
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Figure 2: Performance of different pre-training epochs

Comparison between MAE and SupMAE when pre-trained
for different epochs. SupMAE is efficient and shows a much

faster convergence speed.
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Figure 3: Comparison between MAE and SupMAE when
fine-tuned for 100 epochs on ImageNet-1K. The model ar-
chitecture is ViT-B/16. Both MAE and SupMAE are pre-
trained for 200 epochs. Our SupMAE brings a much better
initialization point than its MAE counterpart.

" Compared with MAE, SupMAE shows better training efficiency
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SupMAE model shows better robustness

ImageNet Sketch (Wang et al.) Table 2: Robustness evaluation on robustness bench-
QI N mark. All methods use the same ViT-B/16 architec-
:\ ‘,J‘;}I“ % ture. The metric is top-1 accuracy, except for IN-

Corruption (Hendrycks and Dietterich 2019) which uses
mean corruption error. We test the same SupMAE model
as in Tabel 1 on 4 ImageNet variants without any special-
ized fine-tuning. The score is measured by the averaging
metric across four variants (we use 100 - error’ for the
IN-Corruption performance metric). DeiT results are repro-
duced using the official checkpoint. Our SupMAE model
shows better robustness on the benchmark.

dataset MAE DeiT (SupMAE (Ours)\
IN-Corruption | 51.7 47.4 48.1
IN-Adversarial 359 279 35.5
IN-Rendition 483 453 51.0
IN-Sketch 345 320 36.0

Score 41.8 305 \ 43.6 /

" Compared with MAE, SupMAE shows better robustness
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SUpMAE learns more transferable features

Table 3: Few-shot transfer learning. All methods use the
same ViT-B/16 architecture. We report the linear probing
and fine-tuning averaged scores on 20 image classification
datasets. X-shot denotes the number of labeled images per
category used during transfer learning. Our SupMAE signif-
icantly outperforms its MAE counterpart. MAE and MoCo-
v3 results are from Li et al. (2022a).

Pre-training Settings | 20 Image Classification Datasets
Checkpoint Method |  5-shot 20-shot 50-shot
Linear Probing
MAE Self-Sup. | 3337 +198 48.03 +270 58.26 + o084
MoCo-v3 Self-Sup. | 50.17 +343 61.99 +251 69.71 + 1.03

SupMAE(Ours)  Sup. 4797 +044  60.86 £031  66.68 +0.47

Fine-tuning
MAE Self-Sup. | 36.10 +325 54.13 £38 65.86 +242
MoCo-v3 Self-Sup. | 39.30 +384  58.75 +555  70.33 + 1.64

SupMAE(Ours)  Sup. 46.76 +012 64.61 o082 71.71 + 0.66

Table 4: Transferring to semantic segmentation on
ADE20K All methods use UperNet with ViT-B/16 back-
bone. For a fair comparison with supervised methods, we
use a fine-tuned model for MAE and SupMAE. Naive su-
pervised results are from He et al. (2021). MAE results are
reproduced using the official fine-tuned checkpoint.

method mloU aAcc mAcc

Naive supervised 47.4 - :
MAE 48.6 82.8 594
SupMAE (ours)  49.0 82.7 60.2

" SupMAE shows better transfer learning performance compared to other

supervised or self-supervised methods
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Ablation Study

Table 5: SupMAE ablation experiments All experiments are using ViT-B/16 on ImageNet-1K. We report fine-tuning (ft) and
linear probing (lin) accuracy (%). If not specified, the default is: the loss ratios of reconstruction (rec) and classification (cls) are
1 and 0.01, global pooling feature is used for classification, the decoder has depth 8, the data augmentation is random resized

cropping, the masking ratio is 75%, and the pre-training length is 200 epochs. Default settings are marked in gray .

(a) Pre-training objectives. Reconstruc-
tion and classfication supports each other.

rec cls ft lin
v 82.4 58.0
v 799 599

v v 831 701

(d) Loss ratio. Small classification loss ra-
tio works best.

cls ratio ft lin

0.02 829 70.2
0.01 83.1 70.1
0.005 831 6938
0.002  82.8 68.8
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(b) Class token. Global pooling feature
performs better than the additional class
token.

case ft lin

clstoken  79.1 65.8
global pool 83.1 70.1

(e) Decoder depth. SupMAE works well
with a light decoder, i.e., an one-layer
transformer decoder.

blocks ft lin

1 83.1 65.7
4 83.1 68.2
8 83.1 70.1

EIW: Edge Intelligence Workshop at AAAI— 26 February 2024

(c) Data augmentation. Our SupMAE
works with minimal data augmentation
like MAE.

data aug ft lin

randcrop 831 70.1
randcrop,cjit  83.0 70.3

(f) MLP layers. An appropriate number
of layers should be set for the classifica-
tion head.

mlp layers ft lin

1 83.0 725
2 83.1 70.1
3 829 69.5

10



SuUpMAE: more training efficient, with SOTA accuracy

" SupMAE extends MAE to a fully-supervised setting by adding a
supervised classification branch, thereby enabling MAE to effectively
learn global features from golden labels

" Through experiments, we demonstrate that not only is SUpMAE more
training efficient but also it learns more robust and transferable

features

" Training cost is 4x less for similar performance
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